Decolorization of Methyl Orange Simulated Wastewater by Chlorine Dioxide with Ultrasound

Abstract:

Article Preview

Experiments were conducted to investigate the decolorization of methyl orange simulated wastewater in order to assess the effectiveness and feasibility of ultrasound(US) enhanced high-purity chlorine dioxide(ClO2) oxidation process. The results showed that in ClO2/US system the decolorization rate of methyl orange was up to 96%, which was increased by 8% as compared to ClO2 treatment alone. The decolorization of methyl orange with/without ultrasonic irradiation follows apparent pseudo-first-order reaction kinetics. The apparent pseudo-first-order rate constant kapp was 0.19min-1 in the ClO2/US system, which was a little higher than 0.13min-1 of rate constant achieved in ClO2 treatment alone. It shows that ClO2/US system can be an effective technology for the decolorization of azo dyes in wastewater.

Info:

Periodical:

Advanced Materials Research (Volumes 255-260)

Edited by:

Jingying Zhao

Pages:

2904-2908

DOI:

10.4028/www.scientific.net/AMR.255-260.2904

Citation:

L. J. Huang et al., "Decolorization of Methyl Orange Simulated Wastewater by Chlorine Dioxide with Ultrasound", Advanced Materials Research, Vols. 255-260, pp. 2904-2908, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] L. G. Devi, S. G. Kumar, K. M. Reddy, C. Munikrishnappa: Journal of Hazardous Materials Vol. 164(2009), pp.459-467.

[2] M. A. Rauf, S. S. Ashraf: Journal of Hazardous Materials Vol. 166(2009), pp.6-16.

[3] A. R. Khataee, V. Vatanpour, A. R. A. Ghadim: Journal of Hazardous Materials Vol. 161(2009), pp.1225-1305.

[4] K. K. Kenji Okitsu, Ben Nanzai, Norimichi Takenaka, Hiroshi Bandow: Chemosphere Vol. 71(2008), pp.36-42.

DOI: 10.1016/j.chemosphere.2007.10.056

[5] S. Song, Z. He, J. Chen: Ultrasonics Sonochemistry Vol. 14(2007), pp.84-88.

[6] Y. S. Ma, C. F. Sung, J. G. Lin: Journal of Hazardous Materials Vol. 178(2010), pp.320-325.

[7] H. S. El-Desoky, M. M. Ghoneim, R. El-Sheikh, N. M. Zidan: Journal of Hazardous Materials Vol. 175(2010), pp.858-865.

[8] Z. Zhang, J. E. Stout, V. L. Yu, R. Vidic: Water Research Vol. 42(2008), pp.129-136.

[9] H. Bergmann, S. Koparal: Electrochimica Acta Vol. 50(2005), pp.5218-5228.

[10] O. Ayyildiz, B. Ileri, S. Sanik: Journal of Hazardous Materials Vol. 168(2009), pp.1092-1097.

[11] M. M. Tauber, G. M. Gübitz, A. Rehorek: Bioresource Technology Vol. 99(2008), pp.4213-4220.

[12] J. Madhavan, P. S. S. Kumar, S. Anandan: Chemosphere Vol. 80(2010), pp.747-752.

[13] H. Zhang, L. Duan, D. Zhang: Journal of Hazardous Materials Vol. 138(2006), pp.53-59.

[14] G. Tezcanli-Güyer, N. H. Ince: Ultrasonics Vol. 42(2004), pp.603-609.

[15] Z. Li, X. Zhang, J. Lin, S. Han, L. Lei: Bioresource Technology Vol. 101(2010), pp.4440-4445.

[16] X. Bi, P. Wang, C. Jiao, H. Cao: Journal of Hazardous Materials Vol. 168(2009), pp.895-900.

In order to see related information, you need to Login.