Development of a Fretting Wear Evaluation Method in the Nuclear Fuel Fretting by Using a Wear Scar Shape

Abstract:

Article Preview

In order to evaluate the effects of a variation of a supporting springs' shape on the wear behavior of a nuclear fuel rod, sliding wear tests have been performed in room temperature air and water. The objective of the tests is to quantitatively evaluate the relationship between a worn area and a wear volume, and the formation behavior of a worn area with a variation of the slip amplitudes, applied normal loads and supporting spring shapes. The results indicated that the variation behavior of the volume and the wear scar size was influenced by the contact shape between the springs and the fuel rods. Also, it was found to be possible to evaluate a critical ratio (Tc) for each spring shape and test condition when the T was defined as the ratio of an applied normal load (Ln) to a wear scar size (At). Below this Tc, the wear volume was rapidly increased and the Tc was determined by a variation of the At under the same applied normal load condition. This result enables us to evaluate a wear resistant spring shape by using an analysis of a wear scar after wear tests have been completed. Based on the above results, the relationship between At and a worn area (Aw), a wear mechanism and an evaluation method for a wear resistance were discussed.

Info:

Periodical:

Advanced Materials Research (Volumes 26-28)

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1231-1234

DOI:

10.4028/www.scientific.net/AMR.26-28.1231

Citation:

Y. H. Lee and H. K. Kim, "Development of a Fretting Wear Evaluation Method in the Nuclear Fuel Fretting by Using a Wear Scar Shape", Advanced Materials Research, Vols. 26-28, pp. 1231-1234, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.