Y-Shaped Carbon Nanowires Obtained from Ethanol Flames and their Growth Mechanism

Abstract:

Article Preview

Y-shaped carbon nanowires as a multi-branched carbon nanostructure have potential applications in electrical nano-devices. In this paper, we report the synthesis of Y-shaped carbon nanowires obtained from ethanol flames. These Y-shaped carbon nanowires have different morphologies from one to another. It is interesting that there are two Y-junctions on individual carbon nanowires. According to our experimental results, the growth mechanism of Y-shaped carbon nanowires has been discussed and a possible growth model of these Y-shaped carbon nanowires has been proposed.

Info:

Periodical:

Advanced Materials Research (Volumes 26-28)

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

711-714

Citation:

J. Cheng et al., "Y-Shaped Carbon Nanowires Obtained from Ethanol Flames and their Growth Mechanism", Advanced Materials Research, Vols. 26-28, pp. 711-714, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

[2] Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo and S. Maruyama: Chemical Physics Letters Vol. 385 (2004), p.298.

[3] A. Gruneis, M. H. Rummeli, C. Kramberger, A. Barreiro, T. Pichler, R. Pfeiffer, H. Kuzmany, T. Gemming and B. Buchner: Carbon Vol. 44 (2006), p.3177.

DOI: https://doi.org/10.1016/j.carbon.2006.07.003

[4] F. J. Aubuchon, L. H. Chen, I. A. Gapin, D. W. Kim, C. Daraio, and S. Jin: Nano Lett. Vol. 4 (2004), p.1781.

[5] L. F. Su, J. N. Wang, F. Yu, Z. M. Sheng: Chem. Vap. Deposition Vol. 11 (2005), p.351.

[6] J. Li, C. Papadopoulos, J. Xu: Nature Vol. 402 (1999), p.253.

[7] A. N. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii: Appl. Phys. Lett. Vol. 79 (2001), p.266.

[8] F. L. Deepak, A. Govindaraj, C. N. R. Rao: Chem. Phys. Let. 3 Vol. 45 (2001), p.5.

[9] B. Gan, J. Ahn, Q. Zhang, Rusli, S. F. Yoon, J. Yu, Q. F. Huang, K. Chew, V. A. Ligatchev, X. B. Zhang, W. Z. Li: Chem. Phys. Let. Vol. 333 (2001), p.23.

[10] M. Terrones, F. Banhart, N. Grobert, J. C. Charlier, H. Terrones and P. M. Ajayan: Phys. Rev. Lett. Vol. 89 (2002), p.075505.

DOI: https://doi.org/10.1103/physrevlett.89.075505

[11] L. B. Kong: Solid State Communications Vol. 133 (2005), p.527.

[12] W. Z. Li, J. G. Wen and Z. F. Ren: Appl. Phys. Lett. Vol. 79 (2005), p.1879.

[13] Y. C. Choi, W. Choi: Carbon Vol. 43 (2005), p.2737.

[14] D. Zhou, S. Seraphin: Chem. Phys. Lett. Vol. 238 (1995), p.286.

[15] M. Sharon and D. Pradhan: J. Nanosci. Nanotech. Vol. 5 (2005), p.1718.

[16] L. X. Zheng, M. J. O'Conell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M A. Hoffbauer, B. J. Roop, Q. X. Jia, R.C. Dye, D. E. Peterson, S. M. Huang, J. Liu and Y. T. Zhu: Naturematerials Vol. 3 (2004), p.673.

DOI: https://doi.org/10.1038/nmat1216

Fetching data from Crossref.
This may take some time to load.