Enhanced Formability of AZ31 Magnesium Alloy Sheet Processed by Equal Channel Angular Rolling and Annealing Treatment


Article Preview

In order to improve the formability of AZ31 magnesium alloy sheet at room temperature, a new process, so-called equal channel angular rolling (ECAR) and followed by annealing treatment was applied to process the sheet. The optical microstructure of the as-received sheet was similar with that of the ECARed one after annealing treatment, the Erichsen value and limiting drawing ratio of the ECARed sheet was about 6.26mm and 1.6, respectively, which was much larger than that of 4.18mm and 1.2 for the as-received sheet. These can be attributed to the low yield ratio and high strain hardening exponent due to the modified texture induced by the shear deformation during ECAR process, which is favor of the activations of basal slipping and twinning at ambient temperature, especially deforming at the rolling direction.



Advanced Materials Research (Volumes 26-28)

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




Z. H. Chen et al., "Enhanced Formability of AZ31 Magnesium Alloy Sheet Processed by Equal Channel Angular Rolling and Annealing Treatment", Advanced Materials Research, Vols. 26-28, pp. 91-94, 2007

Online since:

October 2007




[1] T.C. Chang, J.Y. Wang, O.C. Ming, S. Lee. J. Mater. Process. Technol. 140 (2003), p.588.

[2] M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano. Mater. Letters, 59 (2005), p.3299.

[3] Q. L. Zhang, C. Lu, Y. P. Zhu, W. J. Ding. Chin. J. Nonferrous Metals, 14 (2004), p.391.

[4] Y. Shoichiro, N. Hisashi, Y. Hirokuni, K. Manabe. J. Mater. Process. Technol. 142(2003), p.609.

[5] F. K. Chen, T. B. Huang, C. K. Chang. Int. J. Machine Tools and Manuf. 43(2003), p.1553.

[6] S. R. Agnew, J. A. Horton, T. M. Lillo, D. W. Brown. Scripta Mater. 50 (2004), p.377.

[7] K. Iwanaga, H. Tashiro, H. Okamoto, K. Shimizu. J. Mater. Process. Technol. 155-156 (2004), p.1313.

[8] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Scripta Mater. 45 (2001), p.89.

[9] Y. Saito, H. Utsunomiya, H. Suzuki. Scripta Mater. 42 (2000), p.1139.

[10] H. Utsunomiya., K. Hatsuda, T. Sakai, Y. Saito. Mater. Sci. Eng. A372 (2004), p.199.

[11] J. C. Lee, H. K. Seok, J. H. Han, Y. H. Chung. Mater. Res. Bull. 36 (2001), p.997.

[12] Y. H. Nam, J. H. Han, Y. H. Chung, M. C. Shin. J. Mater. Sci. 39(2004), p.5311.

[13] C.Y. Nam, J.H. Han, Y.H. Chung, M.C. Shin. Mate Sci Eng A347 (2003), p.253.

[14] J.W. Park, J.W. Kim, Y.H. Chung. Scripta Mater 51(2004), p.181.

[15] Y. Q. Cheng, Z. H. Chen, W. J. Xia, D. F. Fu. Chin. J. Nonferrous Metals, 15(2005), p.1369.

[16] Z. H. Chen, Y. Q. Cheng, W. J. Xia. Mater. Manuf. Process. 22(2007), p.51.

[17] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama. Mater. Trans. 44 (2003), p.445.

[18] A. Staroselsky, L. Anand. Int. J. Plast. 19 (2003), p.1843.

[19] H. W. Wagener, J. H. Hartmann, F. Reinhard. Adv. Eng. Mater. 5 (2003), p.237.

Fetching data from Crossref.
This may take some time to load.