First-Principles Study of Structural and Electronic Property of Pyrochlore Dy2Sn2O7


Article Preview

Density Functional Theory method within Generalized Gradient Approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic properties of ideal Dy2Sn2O7 pyrochlore. The results are in excellent agreement with available experimental measurements. DOS of this compound was presented and analyzed. We also notice the presence of the hybridization between oxygen and both Sn and Dy metal.



Advanced Materials Research (Volumes 26-28)

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee




Z. J. Chen et al., "First-Principles Study of Structural and Electronic Property of Pyrochlore Dy2Sn2O7", Advanced Materials Research, Vols. 26-28, pp. 933-936, 2007

Online since:

October 2007




[1] B. J. Wuensch, K. W. Eberman and C. Heremans: Solid State Ionics Vol. 129 (2000), P. 111.

[2] J. Yamaura, Y. Muraoka and F. Sakai: J. Phys. Chem. Solids Vol. 63 (2002), P. 1027.

[3] J. K. Park, C. H. Kim and K. J. Choi: J. Mater. Res. Vol. 16 (2001), P. 2568.

[4] M. J. P. Gingras, B. C. d. Hertog and M. Faucher: Phys. Rev. B Vol. 62 (2000), P. 6496.

[5] J. Lian, K. B. Helean, B. J. Kennedy, L. M. Wang, A. Navrotsky and R. C. Ewing: J. Phys. Chem. B Vol. 110 (2006), P. 2343.

[6] R. C. Ewing, W. J. Weber and J. Lian: J. Appl. Phys. Vol. 95 (2004), P. 5949.

[7] K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan and T. Hartmann: Science Vol. 289 (2000), P. 748.

[8] W. J. Weber and R. C. Ewing: Science Vol. 289 (2000), P. (2051).

[9] W. C. Weber and R. C. Ewing: Mater. Res. Soc. Symp. Proc. Vol. 713 (2002), P. 443.

[10] K. B. Helean, A. Navrotsky, E. R. Vance, M. L. Carter, B. Ebbinghaus, O. Krikorian, J. Lian, L. M. Wang and J. G. Catalano: J. Nucl. Mater. Vol. 303 (2002), P. 226.

[11] A. A. Digeos, J. A. Valdez, K. E. Sickafus, S. Atio, R. W. Grimes and A. R. Boccaccini: J. Mater. Sci. Vol. 38 (2003), P. 1597.

[12] P. E. Raison and R. G. Haire: Prog. Nucl. Energ. Vol. 38 (2001), P. 251.

[13] S. S. Shoup, C. E. Bamberger and R. G. Haire: J. Am. Ceram. Soc. Vol. 79 (1996), P. 1489.

[14] B. D. Begg, N. J. Hess, D. E. McCready, S. Thevuthasan and W. J. Weber: J. Nucl. Mater. Vol. 289 (2001), P. 188.

[15] B. J. Kennedy, B. A. Hunter and C. J. Howard: J. Solid State Chem. Vol. 130 (1997), P. 58.

[16] H. Y. Xiao, X. T. Zu, Y. F. Zhang and F. Gao: Chemical Physics Letters Vol. 417 (1-3) (2006), P. 6.

[17] G. Kresse, J. Hafner and R. J. Needs: J. Phys.: Condens. Matter Vol. 4 (1992), P. 7461.

[18] G. Kresse and J. Hafner: Phys. Rev. B Vol. 47 (1993), P. 558.

[19] G. Kresse and J. Furthmüller: Comput. Mater. Sci. Vol. 6 (1996), P. 5.

[20] G. Kresse and J. Furthmüller: Phys. Rev. B Vol. 54 (1996), P. 11.

[21] G. Kresse and D. Joubert: Phys. Rev. B Vol. 59 (1999), P. 1758.