Machining Time Simulation in High Speed Hard Turning


Article Preview

High speed hard turning is an advanced manufacturing technology that reduces the machining time because of two reasons; reducing the manufacturing steps and increasing the cutting speed. This new approach needs an economical justification; one of the main economical factors is the machining time. The machining time was breaking down into three main parts; productive time, non productive time, and preparation time. By using matlab Simulink, a new program was developed for machining time allowing the manufacturer to find rapidly the values of cutting time parameters and gives the management the opportunity to modify the processing parameters to achieve the optimum time by using the optimum cutting parameters. Table 1: Nomenclature d Depth of cut M T total machining time pmv t Total movement time D Work piece diameter h t handling time pch t Total Tool changing time f Feed rate tc t tool changing time pre t Total preparing time z e Engagement distance on Z-axis ch t Tool changing time per piece, prg t Programming time x e Degagement distance on X-axis am t Machine allowance time su t Set up time k Number of passes ao t Operator allowance time sum t Machine set up L Tool life a t Allowance time sut t Tool set up l Work piece length o t Tool movement at the rapid speed suw t Work piece set up N Spindle speed oA t From zero point to cutting point TH Tool hardness tool n No. of tool posts in the turret p t Total productive time o X tidy of the O t point o1 p Initial position of the turret. o Z = abciss of the O t point w Work piece weigh o2 p Position of the used tool c V Cutting speed c w Width of cutting speed r Rotation speed of the turret f V Feeding speed tool n no. of tool in the turret c t Cutting time o V Rapid speed speed r : Turret rotation speed



Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher






E. Y. T. Adesta and M. H.F. Al Hazza, "Machining Time Simulation in High Speed Hard Turning", Advanced Materials Research, Vols. 264-265, pp. 1102-1106, 2011

Online since:

June 2011




In order to see related information, you need to Login.

In order to see related information, you need to Login.