Rheological Characterization of Water Atomised Stainless Steel SS316L for Micro MIM

Abstract:

Article Preview

This paper investigates the performance of feedstock characteristics for micro metal injection molding (μMIM) by using optimum power loading variation and rheological characterization. The study has been emphasized on the powder and binder system in which stainless steel SS316L powder are mixed with composite binder, which consists of PEG (Polyethelena Glycol), PMMA (Polymethyl Methacrilate) and SA (Stearic Acid) by variation of powder loading concentration. The rheology properties are investigated using Shimadzu Flowtester CFT-500D capillary rheometer. As the geometry of water atomised stainless steel powder are irregular shape, therefore it is expected significant changes in the rheological results that can influence the microcomponent, surface quality, shape retention and resolution capabilities. The optimization of the μMIM rheological properties as a function of stainless steel powder loading concentration are evaluated by flow behavior exponent, activation energy and moldability index. From the results, it shows that 61.5%vol contributes a significant stability over a range of temperature and the best powder loading from a critical powder volume percentage (CPVP) and rheological point of view.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

129-134

DOI:

10.4028/www.scientific.net/AMR.264-265.129

Citation:

M. H. I. Ibrahim et al., "Rheological Characterization of Water Atomised Stainless Steel SS316L for Micro MIM", Advanced Materials Research, Vols. 264-265, pp. 129-134, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.