Influence of Magnetic Field on Corrosion Resistance and Microstructure of Electrodeposited Ni Coatings


Article Preview

This paper focuses on the electrodeposition of nickel from a Ni Watts solution in the presence and absence of a permanent parallel magnetic field (PPMF) to the cathode surface. It was found that the difference between the mass deposition were enhanced in the presence of PPMF and absence of a PPMF (B = 4.4 T) with increase of current density ( m= 0.413 to 4.173 mg cm2 in 6 min). The thickness of deposited layers with PPMF was smaller than without PPMF, therefore higher density of electrodeposited layers can be brought upon by the application of PPMF. The corrosion behavior of samples was tested in the presence and absence of a PPMF (9T). The Polarization resistance was reduced in the presence of the PPMF. The deposited layers were characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Atomic force Microscopy (AFM).



Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher






M. Ebadi et al., "Influence of Magnetic Field on Corrosion Resistance and Microstructure of Electrodeposited Ni Coatings", Advanced Materials Research, Vols. 264-265, pp. 1383-1388, 2011

Online since:

June 2011




[1] N. Kanaani, Electroplating, berline. Elsevier. (2004).

[2] S. Bodea, L. Vignon, R. Ballou and P. Mohlo: Phys. Rev. Lett. Vol. 83 (1999), p.2612.

[3] T. Z. Fahidy, in: The effect of magnetic fields on electrochemical processes. In Conway BE (ed) Modern aspects of electrochemistry, no 32, Kluwer/ plenum, New Yourk, pp.333-354.

DOI: 10.1007/0-306-46916-2_5

[4] G. Hinds, J.M.D. Coey and M.E.G. Lyons: Electrochem. Comm. Vol. 3 (2001), p.215.

[5] N. Leventis, M. G. Chen, X. R. Gao, M. Canalas and P. Zhang: J. Phys. Chem. B, Vol. 102 (1998), p.3512.

[6] R. Aogaki, K. Fueki, T. Mukaibo and Denki Kagaku. 43, (1975), p.504.

[7] O. Aboubi, J. P. Chopart, J. Douglade, A. Oliver, C. Gabrielli and B. Tribollet: J. Electrochem. Soc., Vol. 137 (1990), 1796-1804.

[8] R .A. Tacken and L. J. J. Janssen: J. Appl. Electrochem. Vol. 25 (1995), p.1.

[9] T. Z. Fahidy: Prog. Sur. Sci., Vol. 68 (2001), p.155.

[10] O. Lioubashevski, E. Katz and I. Willner, J. Phys. Chem. C., Vol. 111 (2007), p.6024.

[11] O. Lioubashevski, E. Katz, I. Willner: J. Phys. Chem. C. Vol. 108 (2004), p.5778.

[12] M. Ebadi, W. J. Basirun and Y. Alias: Asi J. Chem, Vol. 21. 9 (2009), p.7354.

[13] H. R. Khan and K. Petrikowski: Mater. Sci. Forum., Vol. 373-376 (2001), p.725.

[14] J. A. Koza, M. Uhemann, C. Mickel and A. Gebert, L: J. Mag. Mag. Mat. Vol. 321 (2009), p.2265.

[15] M. Ebadi, W.J. Basirun and Y. Alias: Asi. J. Chem. Vol. 21. 8, (2009), p.6343.

[16] F. Barbier, A. Alemany and S. Martemianov: Fus. Eng. Des., Vol. 43 (1998), p.199.

[17] A. Ispas, H. Matsushima, A. Bund and B. Bozzini: J. Electroanal. Chem. Vol. 626 (2009), p.174.

[18] W. Plieth, in: Electrochemistry for material science, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 220-229 (2008).

[19] F. Family and J. G. Amar: Mater. Sci. Eng. B., Vol. 30 (1995), p.149.

[20] H. Matsushima. T. Nohira, I. Mogi and Y. Ito: Sur. Coat. Tech. Vol. 179 (2004), p.245.

[21] O. Acar, A.R. Tuker and Z. Kilic: Spectrochim. Acta B. Vol. 55 (2000), p.1635.

[22] R. Sueptitz, J. Koza, Uhlemann, A. Gebert and L. Schultz: Electrochim. Acta. Vol. 54 (2009), p.2229.

[23] M. Srivastava, V. E. Selvi, V.K.W. Grips and K. S. Rajam: Sur. Coat Tech. Vol. 201 (2006), p.3051.

In order to see related information, you need to Login.