Integral Approach and Numerical Improvement to Calculate Carbon Concentration Profiles in Carburising

Abstract:

Article Preview

The carbon diffusion in steel, where the carbon diffusivity varies with the carbon content, was solved with the integral methods under the third boundary condition. The variation of carbon diffusivity in steel with the carbon content was described with two different functions, linear dependence and exponential dependence. The integral approximation for both cases was improved with the numerical computation to more accurately predict the carbon profiles. The integral solution is more accurate than the formulation based on the assumption of a constant diffusivity or those based on the assumption of a constant diffusivity and/or constant carbon content at part surface. It is also more easily used in practice than the numerical method to describe the carburising process and predict the carbon content at steel surface and carbon profiles in treated layer.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

1494-1499

DOI:

10.4028/www.scientific.net/AMR.264-265.1494

Citation:

W. M. Gao et al., "Integral Approach and Numerical Improvement to Calculate Carbon Concentration Profiles in Carburising", Advanced Materials Research, Vols. 264-265, pp. 1494-1499, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] J. Grosch, in: Steel heat treatment handbook, G.E. Totten and M.A.H. Howes, Editors, (Marcel Dekker, Inc, New York 1997) pp.663-719.

[2] W.M. Gao, L.X. Kong, and P.D. Hodgson: Journal of Materials Processing Technology Vol. 125-126 (2002), pp.170-178.

[3] M.N. Ozisik: Boundary Value Problems of Heat Conduction (International Textbook Company, Scranton, Pennsylvania 1968).

[4] A.T. Tamarin: J. Eng. Phys Vol. 41 (1981), pp.1346-1350.

[5] Y.N. Andreev and E.Z. Chernyakhovskii: Metal Science and Heat Treatment Vol. 31 (1989), pp.181-184.

[6] J.I. Goldstein and A.E. Moren: Metallurgical Transactions A: Physical Metallurgy and Materials Science Vol. 9 (1978), pp.1515-1525.

[7] G.S. Gupta, A. Chaudhuri, and P.V. Kumar: Materials Science and Technology Vol. 18 (2002), pp.1188-1194.

[8] K. Bengartz: Metallurgical Transactions A: Physical Metallurgy and Materials Science Vol. 20A (1989), pp.1021-1027.

[9] W.M. Gao, L.X. Kong, and P.D. Hodgson, in: Eighth International Conference on Manufacturing & Management (PCMM 2004) (Gold Coast Australia 2004).

[10] R. Collin, S. Gunnarson, and D. Thulin: Journal of The Iron and Steel Institute (1972), pp.777-784.

[11] C.A. Stickels: Metallurgical Transactions B: Process Metallurgy Vol. 20B (1989), pp.535-546.

[12] W.M. Gao, et al.: ISIJ International Vol. 44 (2004), pp.869-877.

[13] Wells, W. Batz, and R.F. Mehl: Trans. AIME Vol. 188 (1950), pp.553-560.

[14] H.K.D.H. Bhadeshia: Metal Science Vol. 15 (1981), pp.477-479.

[15] J. Agren: Acta Metall. Vol. 30 (1981), pp.841-851.

[16] S.S. Babu and H.K.D.H. Bhadeshia: Journal of Materials Science Letters Vol. 14 (1995), pp.314-316.

[17] A. Ochsner, J. Gegner, and G. Mishuris: Metal Science and Heat Treatment Vol. 46 (2004), pp.148-151.

[18] H. Jehn, et al. in: Max-Planck_Institut fur Metallforschung, H. Behrens and G. Ebel, Editors, (Institut fur Werkstoffwissenschaften, V. XIV 1981) pp.5-14.

[19] G.G. Tibbetts: Journal of Applied Physics Vol. 51(1980), p.4813?816.

[20] G. Leyens, G. Woelk, and J. Wuenning: Arch. Eisenhuttenwes Vol. 47 (1976), pp.385-390.

[21] J. Agren: Scripta Metall. Vol. 20 (1986), p.1507 ?1510.

[22] R. Collin, S. Gunnarson, and D. Thulin: Journal of the Iron and Steel Institute (1972), pp.785-789.

[23] M. Hajduga and J. Kucera: Oxidation of Metals Vol. 29 (1988), pp.419-433.

[24] D. Dragomir and L. Druga: Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing Vol. 302 (2001), pp.115-119.

[25] L.A. Mikhailov: Metal Science and Heat Treatment Vol. 37 (1995), pp.51-52.

In order to see related information, you need to Login.