Statistical Wear Model for Adhesively Bonded Tools


Article Preview

Computerized machinability data systems are essential for the selection of optimum conditions during process planning, and they form an important component in the implementation of computer integrated manufacturing (CIM) systems. Since statistical models for adhesively bonded tools are unavailable, the present paper presents a study of the development of a tool life, surface roughness and cutting force models for turning constructional steels, using adhesively bonded tools. These models are developed in terms of cutting speed, federate and depth of cut. These variables are investigated using design of experiments and utilization of response surface methodology (RMS).



Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher




S.M. Darwish et al., "Statistical Wear Model for Adhesively Bonded Tools", Advanced Materials Research, Vols. 264-265, pp. 1802-1811, 2011

Online since:

June 2011




[1] Box, G.; Behnken, D., ‏Some New three Level Designs for the Study of Quantitative Variables‏, Techno metrics, vol. 2‏ (1960), No. 4, pp.455-457.


[2] Sheldon, F.R., ‏Statistical Techniques Applied to Production Situations‏, Indust. Eng. Chem., vol. 52‏ (1960)‏, No. 4, pp.507-509.

[3] Wilson, C.L., ‏Production of a New Chemical: A Designed Experiment‏, Indust. Eng. Chem., vol. 52‏ (1960), pp.504-506.

[4] Show, M., C., Nakayama, K., ‏The machining of high strength materials‏, Annals of the CIRP, vol. 15‏ (1967), No. 1, pp.45-59.

[5] Alfred, O.; Schmidt, ‏Tools For Machining Engineering Materials With Hard, Wear - Resistant Infusions‏, ASME Journal of Engineering for Industry, (1969)‏, pp.549-552.


[6] Hodgson, T.; Trendler, P. ‏, Turning Hardened Tool Steel with Cubic Boron Nitride‏, Annals of the CIRP, vol. 30‏ (1981), p.63.


[7] Vigneau, J.; Boulanger, J. ‏, ‏Behavior of Ceramic Tools during the Machining of Nickel-base Alloys‏, Annals of the CIRP, vol. 31‏ (1982), pp.35-39.


[8] Daniel, E.H., ‏Now: Turn Hardened Steel and Tough Super-alloys as Easily as Mild Steels‏, Machining of Hard Materials, ASM. (1982).

[9] Koning, et al, ‏Machining of Hard Materials‏, Annals of the CIRP, vol. 32 (1984), No. 2, pp.417-427.

[10] Farag, M.M., ‏Selection of Materials and Manufacturing Processes for Engineering Design‏, Prentice Hall, New York. (1989).

[11] Darwish, S. and Davies, R., ‏ ‏Investigation of Heat Flow through Bonded and Brazed Metal Cutting Tools‏, Int. J. Mach. Tools ‏& Manufact, vol. 29 (1989), No. 2, pp.229-237.


[12] Sueyoshi, H.; Suenga, K.; Tanaka, R, ‏ Cold Forgability and Machinability after Cold Forging of Hypo-Eutectoid Graphite Steels, Journal of Japan Institute of Metals, vol 53 (1989), No2, pp.206-211.

[13] Kilik, S., Davies R, and. Darwish, S. M, ‏Thermal Conductivity of Epoxy Resin Adhesives‏, Int. J. of Adhesion and Adhesives, England, vol. 9 (1989), pp.219-223.


[14] Sueyoshi, H.; Tanaka, R, ‏ Heat Treatment and Machinability of the Tri-phase Steel Composed of Ferrite Martensite and Graphite" , Journal of Japan Institute of Metals, vol. 54 (1990), No2, pp.231-236.

[15] Ronald, D.M.; Thomas, W.; Lloyd, P.P., ‏Improving Quality Through Planned Experimentation‏, McGraw-Hill, New York, (1991).

[16] Darwish, S. M., Niazi, A., and Ghanya, A. ‏Phase Stability of Duralumin Machined with Bonded and Brazed Metal Cutting Tools‏, Int. J. of Mach. Tools ‏& Manufact., vol. 32 (1992), No. 4, pp.593-600.


[17] Shaw, M.C., Vyas, A. ‏, ‏Chip Formation in The Machining of Hardened Steel‏, Annals of CIRP, vol. 42 (1993), No. 1, pp.29-33.


[18] Narutaki, N., Yamne, Y. ‏, ‏High-Speed Machining of Inconel 718 With Ceramic Tools‏, Annals of CIRP, vol. 42 (1993)‏, No. 1, pp.100-105.


[19] Cogun, C., ‏ Computer-Aided Preliminary Selection of Non-traditional Machining Processes‏, Int. J. Mach. Tools ‏& Manufact. vol. 34 (1994)‏, No. 3, pp.315-326.

[20] Gatto, A. and Luliano, L., ‏Chip Formation Analysis in the High Speed Machining of a Nickel Super alloy with Silicon Carbide Whisker Reinforced Alumina‏, Int. J. Mach. Tools ‏& Manufact., vol. 34 (1996), No. 8, pp.1147-1161‏, U. K.


[21] El-Wardany, T.I.; Mohammed, E.; El Bastawi, M.A., ‏Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-to Cut Materials‏, Int. J. Mach. Tools ‏& Manufact. vol. 36 (1996), No. 5, pp.611-634, U. K.


[22] Montgomery, D.C., ‏Design and Analysis of Experiments‏, 4th edition, John Wiley ‏& Sons, U.S. A, (1996).

[23] Janc, D.Y.; Choi, Y.; Kim, H.; Hsiano, A., ‏Study of‏ The Correlation Between Surface Roughness and Cutting Vibrations to Develop on-line Measuring Technique in Hard Turning‏, Int. J. Mach. Tools Manufact., vol. 36 (1996).


[24] Coher, S.A. and Shin, Y.C., ‏In-process Control of M monitoring Using Computer Vision‏, Int. J. Mach. Tools Manufact., vol. 36 (1996), No. 7, pp.817-828, U. K.

[25] Maekawa, K.; Ohshima,I.; Nakano, Y., ‏ Case Studies of Troubleshooting in Connection with‏ Uncontrollable Chips, Journal of Materials Processing Technology, vol 62 (1996)‏, No 4, pp.352-357.


[26] Brunzel, Yu.; Fomin, I. M, ‏ Influence of Pearlite in Structural Steel on its Machinability, Metallovedenie Terrmicheskaya Obrabotka, (1997) No 1, pp ‏-29-31. ‏.

[27] Darwish, S. M., ‏Machining of Hard Materials with Bonded Tools, Int. MDP conference, pp.279-289, Egypt, (2000).

[28] Boubekri N; Roddriguez, J. ; Asfour S. ‏ Development of An Aggregate Indicator to Assess the Machinability of Steels, J. of Materials Processing Technology, vol. 134 ( 2003) pp.159-165.


Fetching data from Crossref.
This may take some time to load.