Effects of Bismuth Oxide on the Properties of Calcium Phosphate Bioceramics

Abstract:

Article Preview

The aim of this work is to study the phase stability and sinterability of bismuth oxide (Bi2O3) doped HA ranging from 0.05 wt% to 1 wt%. The green samples were sintered in air at temperature ranging from 1000oC to 1400oC. In this experiment, the results from XRD analysis revealed that the stability of HA phase was disrupted when addition of 0.3, 0.5 and 1.0 wt% Bi2O3 were used and when samples sintered above 1100oC, 1000oC and 950oC, respectively. In general, HA containing 0.5 wt% of Bi2O3 and when sintered at 1000oC was found to be beneficial in enhancing densification, Young’s modulus, Vickers hardness and fracture toughness. Throughout the sintering regime, the highest value of relative bulk density of 98.7% was obtained for 0.5 wt% Bi2O3-doped HA when sintered at 1000oC. A maximum Young’s modulus of 119.2 GPa was observed for 0.1 wt% Bi2O3-doped HA when sintered at 1150oC. Additionally, 0.5 wt% Bi2O3-doped HA was able to achieve highest hardness of 6.04 GPa and fracture toughness of 1.21 MPam1/2 at sintering temperature of 1000oC. Furthermore, the Young’s modulus of HA was found to vary linearly with bulk density.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

1839-1848

DOI:

10.4028/www.scientific.net/AMR.264-265.1839

Citation:

W. H. Yeo et al., "Effects of Bismuth Oxide on the Properties of Calcium Phosphate Bioceramics", Advanced Materials Research, Vols. 264-265, pp. 1839-1848, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] Hench, L. L. (1998). Biomaterials: A forecast for the future. Biomaterials, Vol. 19, 1419-1423.

DOI: 10.1016/s0142-9612(98)00133-1

[2] Suchanek, W & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., Vol. 13, 94-117.

DOI: 10.1557/jmr.1998.0015

[3] Adamopoulos, O. & Papadopoulos, T. (2007). Nanostructured bioceramics for maxillofacial applications. J. Mater. Sci: Mater. Med., Vol. 18, 1587-1597.

DOI: 10.1007/s10856-007-3041-6

[4] Suchanek, W., Yashima, M., Kakihana, M. & Yoshimura, M. (1997). Hydroxyapatite ceramics with selected sintering additives. Biomaterials, Vol. 18, 923-933.

DOI: 10.1016/s0142-9612(97)00019-7

[5] Muralithran, G. & Ramesh, S. (2000). The effect of MnO2 addition on the sintering behavior of hydroxyapatite. Biomed. Eng. App, Basis & Comm., Vol. 12, 43-48.

[6] Kalita, S. J., Bhardwaj, A. & Bhatt, H. A. (2007). Nanocrytalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng. C, Vol. 27, 441-449.

[7] Georgiou, G. & Knowles, J. C. (2001). Glass reinforced hydroxyapatite for hard tissue surgery—Part 1: mechanical properties. Biomaterials, Vol. 22 (20) 2811-2815.

DOI: 10.1016/s0142-9612(01)00025-4

[8] Khalil, K. A., Kim, S. W. & Kim, H. Y. (2007). Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2 + 3 mol% Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A, Vol. 456, 368-372.

DOI: 10.1016/j.msea.2006.12.005

[9] Sato, M., Sambito, M. A., Aslani, A., Kalkhoran, N. M., Slamovich, E. B. & Webster, T. J. (2006).

[10] Ramesh, S., Tan, C. Y., Peralta, C. L. & Teng, W. D. (2007). The effect of manganese oxide on the sinterability of hydroxyapatite. Science and Technology of Advance Materials, Vol. 8, 257-263.

[11] Kalita, S. J. & Bhatt, H. A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci and Eng C, Vol. 27, 837-848. (2007).

DOI: 10.1016/j.msec.2006.09.036

[12] Webster, T J., Massa-Schlueter, E A., Smith, J. L. & Slamovich, E. B. (2004). Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, Vol. 25, 2111-2121.

DOI: 10.1016/j.biomaterials.2003.09.001

[13] Ramesh, S. (2004). A method for manufacturing hydroxyapatite bioceramic, Malaysia Patent, No. PI. 20043325.

[14] ASTM E1876-97 (1998) Standard test method for dynamic Young's modulus, shear modulus and Poisson's ratio by impulse excitation of vibration, Annual Book of ASTM Standards.

DOI: 10.1520/e1876

[15] Niihara, K. (1985). Indentation microfracture of ceramics – its application and problems. Ceramic Jap. Vol. 20, 12-18.

[16] Fanovich, M. A. & Lopez, J. M. P. (1998). Influence of temperature and additives on the microstructure and sintering Behaviour of hydroxyapatites with different Ca/P ratios. J. Mater. Sci.: Mater. Med., Vol. 9, 53-60.

[17] Raynaud, S., Champion, E. & Bernache-Assollant, D. (2002b). Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and Sintering. Biomaterials, Vol. 23, 1073-1080.

DOI: 10.1016/s0142-9612(01)00219-8

[18] Bandyopadhyay, A., Withey, E. A., Moore, J. & Bose, S. (2007). Influence of ZnO doping in calcium phosphate ceramics. Mater. Sci. Eng. C, Vol. 27, 14-17.

DOI: 10.1016/j.msec.2005.11.004

[19] Santos, J. D., Silva, P. L., Knowles, J. C. & Hasting, G. W. (1995). Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions- structure and properties of the composites. J. Mater. Sci: Mater. Med., 6, 348-352.

DOI: 10.1007/bf00120303

[20] Shuk, P., Wiemhofer, H. –D., Guth, U., Gopel, W. & Greenblatt, M. (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, Vol. 89, 179-196.

DOI: 10.1016/0167-2738(96)00348-7

[21] Liu, D. -M. (1998). Preparation and characterization of porous hydroxyapatite bioceramic via a slip-casting route. Ceram. Inter., Vol. 24, 441-446.

DOI: 10.1016/s0272-8842(97)00033-3

[22] Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F., Ginebra, M.P., Aparicio, C. & Planell, J.A. (2002).

[23] Kalita, S.J., Bose, S., Hosick, H.L. & Bandyopadhyay, A. (2004). CaO–P2O5–Na2O based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials,  Vol. 25, 2331-2339.

DOI: 10.1016/j.biomaterials.2003.09.012

[24] Filho, F. P., Nogueira, R. E. F. Q., Graca, M. P. F., Valente, M.A., Sombra, A.S.B. & Silva, C. C. (2008).

[25] Georgiou, G. & Knowles, J. C. (2001). Glass Reinforced Hydroxyapatite for Hard Tissue Surgery- Part 1: Mechanical Properties. Biomaterials, Vol. 22, 2811-2815.

DOI: 10.1016/s0142-9612(01)00025-4

In order to see related information, you need to Login.