Ultra-Violet Radiationcured Composites Based on Unsaturated Polyester Resin Filled with MMT and Kenaf Bast Fiber

Abstract:

Article Preview

In this study, nanocomposites based on unsaturated polyester cured by ultra-violet (UV) radiation were prepared using Kenaf bast fibre and Montmorillonite (MMT) as reinforcing agent at different percentages. MMT was modified using an ion exchange process by replacing the sodium ions with alkyl ammonium ions from Cetyltrimethylammonium Bromide (CTAB). From the results obtained, the microstructure of MMT modified with CTAB (MMT-CTAB) showed the interlayer spacing of MMT-CTAB was increased and X-ray diffraction analysis indicated that cation exchange between CTAB and MMT was evident. As for the composites prepared from untreated MMT-CTAB, it showed higher mechanical properties as compared to those prepared from untreated MMT. On the other hand, the percentage of Kenaf fiber in the nanocomposites system also plays a crucial role in determining the nanocamposites properties.

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Edited by:

M.S.J. Hashmi, S. Mridha and S. Naher

Pages:

712-718

DOI:

10.4028/www.scientific.net/AMR.264-265.712

Citation:

A.R. Rozyanty et al., "Ultra-Violet Radiationcured Composites Based on Unsaturated Polyester Resin Filled with MMT and Kenaf Bast Fiber", Advanced Materials Research, Vols. 264-265, pp. 712-718, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] Rowell, R. M. Research in industrial application of non food crops, I: plant fibers, Copenhagen, Denmark, 1995, p.27.

[2] Okudaira, Y. Development of kenaf boards and their properties. Seminar on Kenaf: A New Source of Growth, Le Meridien, Kuala Lumpur, 10 May 2005 (2005).

[3] Fu, S. Y.; Lauke, B.; Mader, E.; Yue, C. Y.; Hu, X., Tensile properties of short-glassfibre and short-carbon-fibre-reinforced propylene composites. Composites Part A: Applied Science and Manufacturing 31, 1117 (2000).

DOI: 10.1016/s1359-835x(00)00068-3

[4] Sreekala, M. S.; Thomas, S., Effect of fibre surface modification on water-sorption characteristic of oil palm fibre. Composites Science and Technology 63, 861 (2003).

DOI: 10.1016/s0266-3538(02)00270-1

[5] Wambua, P.; Ivens, J.; Verpoest, I., Natural fibre: can they replace glass in fibre reinforced plastic? Composites Science and Technology 63, 1259 (2003).

DOI: 10.1016/s0266-3538(03)00096-4

[6] Shibata, S.; Cao, Y.; Fukumoto, I., Lightweight laminated composites made from kenaf and polypropelene fibre. Polymer Testing 25, 142 (2006).

DOI: 10.1016/j.polymertesting.2005.11.007

[7] Paul, P. Surface Coating: Science & Technology, 2nd Ed., John Wiley & Sons; New York, (1996).

[8] Crivello, J. V, Narayan, R. and Sternstein, S.S. Fabrication and mechanical characterization of glass fiber reinforced UV-cured composites from epoxidized vegetable oils. Journal of Applied Polymer Science, 64, 2073-2087 (1997).

DOI: 10.1002/(sici)1097-4628(19970613)64:11<2073::aid-app3>3.0.co;2-g

[9] Forness, T. D.; Yoon, P. J.; Keskkula, H.; Paul , D.R., Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42, 9929 (2001).

DOI: 10.1016/s0032-3861(01)00552-3

[10] Zaman, K.; Mahmood, M. H.; Ravijst, J. P. In Proceedings of RadTech Asia , 97; Yokohama, Japan, November 4–7, 1997; p.800–804.

[11] J. Kotek, I. Kelner, M. Studenovsky, and J. Baldrian, Chlorosulfonated polypropylene: preparation and its application as a coupling agent in polypropylene—clay nanocomposites. Polymer, 2005. 46: pp.4876-4881.

DOI: 10.1016/j.polymer.2005.02.119

[12] Lee, S. R.; Park, H. M.; Lim, H. L.; Kang, T.; Li, X.; Cho, W. J.; Ha, C. S., Microstructure, tensile properties and biodegradebility of aliphatic polyester/clay nanocomposites. Polymer 43, 2495 (2002).

DOI: 10.1016/s0032-3861(02)00012-5

[13] Liu, X.; Wu, Q., PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 42, 10013 (2001).

DOI: 10.1016/s0032-3861(01)00561-4

[14] Wang, Z.; Lan, T.; Pinnavaia, T. J., Hybrid organic-inorganic nanocomposites form from epoxy and layed silicic acid (Megadiite). Chemistry Material 8, 2200 (1996).

DOI: 10.1021/cm960263l

[15] R.N. Kumar, M.W. Lee, H.D. Rozman and A.B. Abusamah. Sheet Moulding Composites from Hybrid Reinforcements of Bio-fibres and Glass Fibre paper presented at the Asia Pacific Rim Conference on Toward the New Genertation of Bio-based Composite products, Kyoto (1996).

[16] Ellis, T.S. & D'Angelo, J.S. Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science, 90, 1639-1647, (2002).

[17] R.A. Vaia, P.K.D. Jandt, E.J. Kramer, E.P. Giannelis, Kinetic of polymer melt intercalation. Macromolecule 28, 8080-8085 (1999).

DOI: 10.1021/ma00128a016

[18] Jong, H.P., Jana, C.S., The relationship between nano- and macro-structures and mechanical properties in PMMA-epoxy-nanoclay composites. Polymer 44, 2091-2100 (2003).

DOI: 10.1016/s0032-3861(03)00075-2

[19] J.H. Chang, D.K. Park and K.J. Ihn, Montmorillonite based nanocomposites on polyazobenzoxazole: sinthesis and characterazasin (I). Journal Polym Sci Part B. Polym Phys 39, 471-476 (2001).

[20] Walter, P., Mader, D., Reichert, P. & Mulhaupt, R.J., Novel polypropylene materials. Journal of macromolecule Science. A36, 1613-1639 (2003).

[21] Uhl, F.M., Davuluri, S.P., Wang, S.C., Webster, D.C., Organically modified montmorillonite in UV curable urethane acrilate film. Polymer 45, 6175-6187 (2004).

DOI: 10.1016/j.polymer.2004.07.001

[22] Osman, M.A., Rupp, J.E. P, & Sutter, R.P., Tensile properties of polyurethane-layered silicate nanocoposites. Polymer, 46, 1653-1660 (2004).

In order to see related information, you need to Login.