Using Depth Image in 3D Model Retrieval System

Abstract:

Article Preview

For content-based 3D model retrieval, an improved depth image-based feature extraction algorithm is proposed. First, a 3-D model is preprocessed. Secondly, six depth images are generated in three principal directions in the normalized coordinate system. Thirdly, the eigenvectors of 3D model are obtained through 2D Fourier Transform of the depth images. Finally a new method is used for low-frequency sampling. Experiments show that the approach performed quite well despite its apparently simple approach. In our large 3D database, our approach is well for variant resolution models and holds satisfied computational costs.

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Edited by:

Feng Xiong

Pages:

981-987

DOI:

10.4028/www.scientific.net/AMR.268-270.981

Citation:

Y. G. Liu et al., "Using Depth Image in 3D Model Retrieval System", Advanced Materials Research, Vols. 268-270, pp. 981-987, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] Michael M. Kazhdan. Shape representation and algorithms for 3D model retrieval[D].Princeton Univ, 2004.

[2] Benjamin Bustos, Tobias Schreck. Feature-based 3D object retrieval. Encyclopedia of Database Systems. 2009, 1125-1128.

DOI: 10.1007/978-1-4899-7993-3_161-2

[3] Robert Osada, Thomas Funkhouser, Bernard Chazelle. Shape distributions[J]. ACM Transactions Graphics, October 2002, 21(4): 807-832.

DOI: 10.1145/571647.571648

[4] Sundar H, Silver D, Gagvani S, et al. Skeleton based shape mathing and retrieval[C]. In: Proceedings of the Shape Modeling and Applications Conference(SMI). Seoul. 290~308, (2003).

DOI: 10.1109/smi.2003.1199609

[5] Novotni M, Klein R, A geometric approach to 3D object comparison[A]. In: Proceedings of International 1st Conference on Shape Modeling and Applications, genova, 167~175, (2001).

DOI: 10.1109/sma.2001.923387

[6] Funkhouser, Patrick Min,M. Kazhdan, J. Chen, A. Halder-man, D. Dobkin and D. Jacobs. A Search Engine for 3DModels[M]. ACMTransactions on Graphics, 22(1): 83-105, Jan. (2003).

DOI: 10.1145/588272.588279

[7] Benjamin Bustos, Daniel Keim, Dietmar Saupe. An experimental comparison of feature-based 3D retrieval Methods, 2nd International Symposium on 3D data processing[D] , Visualization and Transmission, (2004).

DOI: 10.1109/tdpvt.2004.1335197

[8] Ding-Yun Chen, Xiao-pei Tian, Yu-Te Shen, Ming Ouyoung. On Visual similarity Based 3D Model Retrieval. EUROGRAPHICS 2003. 22(3): 2003, 223-232.

DOI: 10.1111/1467-8659.00669

[9] N. Vajramushti, I. A. Kakadiaris, T. Theoharis, G. Papaioannou. Efficient 3D object retrieval using depth images. MIR '04 Proceedings of the 6th ACM SIGMM international workshop on Multimedia information retrieval. 2004, 189 - 196.

DOI: 10.1145/1026711.1026743

[10] BROTMAN. L S, BADLER. N I. Generating soft shadows with a depth buffer algorithm. IEEE Computer Graphics and Applications. Vol. 4, pp.5-12. Oct. (1984).

DOI: 10.1109/mcg.1984.6429330

[11] Donald Meagher. Geometric modeling using octree encoding. Computer Graphics and Image Processing. Volume 19, Issue 2, June 1982, Pages 129-147.

DOI: 10.1016/0146-664x(82)90104-6

[12] Evaggelia-Aggeliki Karabassi, Georgios Papaioannou, Theoharis Theoharis. A fast depth-buffer-based voxelization algorithm. Journal of Graphics Tools. Volume 4 Issue 4, 1999, 5 - 10.

DOI: 10.1080/10867651.1999.10487510

[13] Johan W H, Tangelder, remco C Veltkamp. A survey of content based 3D shape retrieval methods. Multimedia Tools and applications. 2008, volume39, Number 3, 441-471.

DOI: 10.1007/s11042-007-0181-0

[14] Ryutarou Ohbuchi, Masatoshi Nakazawa, Tsuyoshi Takei. Retrieving 3D shapes based on their appearance. MIR '03 Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval. 2003. 39 - 45.

DOI: 10.1145/973264.973272

[15] S. Lao, M. Kawade, Y. Sumi, and F. Tomita. 3D template matching for pose invariant face recognition using 3D facial model built with isoluminance line based stereo vision. In International Conference on Pattern Recognition, pages 911-916, Barcelona, Spain, September 03-08 (2000).

DOI: 10.1109/icpr.2000.906222

[16] Mohamed Chaouch, Anne Verroust-Blondet. Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval. Shape Modeling International'06, Matsushima. 2006, 36-41.

DOI: 10.1109/smi.2006.11

[17] Mohamed Chaouch, Anne Verroust-Blondet. 3D MODEL RETRIEVAL BASED ON DEPTH LINE DESCRIPTOR. Multimedia and Expo, 2007 IEEE International Conference. 2007, 599 - 602.

DOI: 10.1109/icme.2007.4284721

[18] Georgios P, Theoharis T, Ioannis A. Kakadiaris. PTK: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. Visual Compute(2007) 23: 5–14.

DOI: 10.1007/s00371-006-0037-z

[19] Takahiko F, Ryutarou O. Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. ACM International Conference on Image and Video Retrieval. 2009, 26.

DOI: 10.1145/1646396.1646430

[20] Heczko M, Keim D, Saupe D, et al. A method for similarity search of 3d objects[C]. In: Proceedings of German Database Conference(BTW), Olgenburg, Germany, 2001, 384-401.

[21] R. Osada, T. Funkhouser, Bernard Chazelle, and David Dobkin Shape Distributions, ACM TOGS, 21(4), pp.807-832, (October 2002).

DOI: 10.1145/571647.571648

[22] Pan Y, Zhou M, Fan Y Yu Shaode. A SVM based relevance feedback algorithm for 3D model retrieval. 2010 Asia-Pacific Conference on Wearable Computing Systems,. 2010: 139-142.

DOI: 10.1109/apwcs.2010.41

[23] Fan Y, Zhou M, Geng G. Semantic-oriented 3D model retrieval using visual vocabulary labeling. International Joint Conference on Artificial Intelligence, IITA-JCAI2009. 2009: 642-648.

DOI: 10.1109/jcai.2009.221

In order to see related information, you need to Login.