Effect of Thermophysical Properties and Processing Conditions on Primary Dendrite Arm Spacing of Nickel-Base Superalloys – Numerical Approach


Article Preview

This paper presents the results of an investigation on the interrelationship between thermophysical properties, processing conditions and primary dendrite arm spacing for a nickel-base superalloy. The research was realized for CMSX-4, directionally solidified in a Bridgman furnace. For a systematic, fast and cost-efficient investigation numerical finite element models were applied. The numerical model, composed of thermophysical material data, geometric data and boundary conditions, was calibrated and experimentally validated. Microstructural parameters of the castings were determined for a broad range of processing conditions and varying thermophysical properties in order to study general influences. Withdrawal speed, furnace temperature, enthalpy of fusion, solidification range, heat conductivity and specific heat were varied accordingly. The primary dendrite arm spacing is predominantly influenced by withdrawal speed and furnace temperature, but shows only a weak dependency on thermophysical properties.



Main Theme:

Edited by:

M. Heilmaier




M. M. Franke et al., "Effect of Thermophysical Properties and Processing Conditions on Primary Dendrite Arm Spacing of Nickel-Base Superalloys – Numerical Approach", Advanced Materials Research, Vol. 278, pp. 156-161, 2011

Online since:

July 2011


[1] M. McLean: Directionally solidified materials for high temperature service (The Metals Society 1983).

[2] M. Lamm: Einfluss der Erstarrungsbedingungen auf die mechanischen Eigenschaften von einkristallinen Superlegierungen bei großen Wandstärken (Dissertation, Technische Fakultät der Universität Erlangen – Nürnberg, 2007).

[3] J.D. Hunt: Solidification and casting of metals (The Metals Society 1979).

[4] W. Kurz, D.J. Fisher: Acta Metallurgica Vol. 29 (1981), p.11.

[5] R. Trivedi: Metallurgical and Materials Transactions Vol. 15 A (1984), p.977.

[6] L.A. Chapman, R. Morrell, P.N. Quested, R.F. Brooks, L.H. Chen, D. Ford: Properties of alloys and moulds relevant to investment casting (National Physical Laboratory, UK 2008).

[7] K.C. Mills: Recommend values of thermophysical properties for selected commercial alloys (National Physical Laboratory, UK 2002).

[8] M. Palumbo, D. Baldissin, L. Battezatti, O. Tassa, R. Wunderlich, H.J. Fecht, R. Brooks, K. Mills: Materials Science Forum Vol. 508 (2006), p.591.

DOI: https://doi.org/10.4028/www.scientific.net/msf.508.591

[9] N. Hofmann: Simulation von Wärmstrahlung am Beispiel des Bridgman-Verfahrens zur gerichteten Erstarrung von Turbinenschaufeln (Dissertation, Rhein-Westfälische Technische Hochschule Aachen, 1995).

[10] P. Krug: Einfluss einer Flüssigmetallkühlung auf die Mikrostruktur gerichtet erstarrter Superlegierungen (Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, 1998).

[11] A.J. Elliot, T.M. Pollock: Metallurgical and Materials Transactions Vol. 28 A (2007), p.871.

[12] C.V. Madhusudana: Thermal contact conductance (Springer Verlag, New York, 1996).