Modeling of Precipitation Kinetics of TCP-Phases in Single Crystal Nickel-Base Superalloys

Abstract:

Article Preview

The precipitation of brittle so-called TCP-phases is critical for the application of Re-containing single crystal superalloys. In this work a fully multicomponent precipitation model is presented, which is capable of simulating the precipitation process of the TCP-phases in superalloys considering complex precipitation sequences with several metastable phases. The model is coupled to multicomponent thermodynamic CALPHAD calculations and relies on multicomponent diffusion models based on the TC-API interface of the software DICTRA. The required mobility database has been newly developed and covers all relevant alloying elements of the Ni-base superalloys including rhenium (Re) and ruthenium (Ru). It is well known that adding Ru strongly reduces TCP-phase precipitation. Based on the developed precipitation model, possible mechanisms are investigated to explain this effect and it is concluded that Ru mostly influences the nucleation rate by a combined influence on interface energy, “reverse partitioning” and γ’-phase fraction.

Info:

Periodical:

Main Theme:

Edited by:

M. Heilmaier

Pages:

180-185

Citation:

R. Rettig et al., "Modeling of Precipitation Kinetics of TCP-Phases in Single Crystal Nickel-Base Superalloys", Advanced Materials Research, Vol. 278, pp. 180-185, 2011

Online since:

July 2011

Export:

[1] H. Harada, in: International Gas Turbine Congress, edited by M. Ito et al., Tokyo, Japan (2003), p.1.

[2] C.M.F. Rae: Mater. Sci. Tech. 25 (2009) p.479.

[3] B.B. Seth, in: Superalloys 2000, edited by T. M. Pollock et al., TMS, Seven Springs (2000), p.3.

[4] R.C. Reed, T. Tao and N. Warnken: Acta Mater. 57 (2009) p.5898.

[5] S. Neumeier, F. Pyczak and M. Göken, in: Superalloys 2008, edited by R. C. Reed et al., TMS, Seven Springs (2008), p.109.

[6] C.M.F. Rae and R.C. Reed: Acta Mater. 49 (2001) p.4113.

[7] R. Hobbs, L. Zhang, C.M.F. Rae and S. Tin: Met. and Mater. Trans. A 39 (2008) p.1014.

[8] K. O'Hara, W. Walston, E. Ross and R. Darolia, United States Patent 5. 482. 789 (1996).

[9] A.C. Yeh, C.M.F. Rae and S. Tin, in: Superalloys 2004, edited by K. A. Green et al., TMS, Seven Springs (2004), p.677.

[10] A. Volek, F. Pyczak, R.F. Singer and H. Mughrabi: Scripta Mater. 52 (2005) p.141.

[11] P.J. Fink, J.L. Miller and D.G. Konitzer: JOM 62 (2010) p.55.

[12] J.D. Robson and H.K.D.H. Bhadeshia: Mater. Sci. Tech. 13 (1997) p.631.

[13] J.D. Robson and H.K.D.H. Bhadeshia: Mater. Sci. Tech. 13 (1997) p.640.

[14] T. Sourmail and H.K.D.H. Bhadeshia: CALPHAD 27 (2003) p.169.

[15] R. Kampmann, and R. Wagner, in: Acta-Scrip. Met., Conference Proceedings II, edited by P. Haasen et al., Pergamon, Oxford, (1984), p.91.

[16] N. Saunders, M. Fahrmann and C. Small, in: Superalloys 2000, edited by K. Green et al., TMS, Seven Springs (2000), p.803.

[17] R. Rettig, A. Heckl, S. Neumeier, F. Pyczak, M. Göken and R.F. Singer: Defect and Diffusion Forum 289-292 (2009) p.101.

DOI: https://doi.org/10.4028/www.scientific.net/ddf.289-292.101

[18] E.H. Copland, N.S. Jacobson and F.J. Ritzert: Technical Memorandum NASA/TM-2001-210897, NASA, Glenn Research Center (2001).

[19] J.C. Zhao and M.F. Henry: Adv. Eng. Mater. 4 (2002) p.501.

[20] H. Sieurin and R. Sandström: Mater. Sci. Eng. A 444 (2007) p.271.

[21] Q. Chen, J. Jeppson and J. Ågren: Acta Mater. 56 (2008) p.1890.

[22] E. Kozeschnik, J. Svoboda and F.D. Fischer: Mater. Sci. Eng. A 441 (2006) p.68.

[23] A.P. Ofori, C.J. Humphreys, S. Tin and C.N. Jones, in: Superalloys 2004, edited by K. A. Green et al., TMS, Seven Springs (2004), p.787.

[24] L. Carroll, Q. Feng, J. Mansfield and T. Pollock: Met. Mater. Trans. 37A (2006) p.2927.

[25] R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu and M.K. Miller: Scripta Mater. 51 (2004) p.327.