Creep Rupture Strength of Re and Ru Containing Experimental Nickel-Base Superalloys


Article Preview

The influence of Re and Ru on creep rupture strength has been investigated using a new in-house designed alloy-series comprising 9 experimental nickel-base superalloys with stepwise increased Re and Ru additions. The presented creep data reveals a significant increase in creep rupture strength by additions of Re. For additions of Ru an increase of creep rupture strength can only be found for low Re contents. The present article, which is part of an extensive and systematic investigation on Re and Ru influences, shows, that an improved creep resistance by an influence of Re and Ru on the γ’-solvus temperature is rather improbable. Likewise, the influence of Re and Ru on liquidus temperature is not expected to play an important role. However, the creep rupture strength is suggested to be highly modified by γ/γ’-microstructure changes.



Main Theme:

Edited by:

M. Heilmaier




A. Heckl et al., "Creep Rupture Strength of Re and Ru Containing Experimental Nickel-Base Superalloys", Advanced Materials Research, Vol. 278, pp. 339-344, 2011

Online since:

July 2011


[1] Reed, R. C., The Superallos (Vol. 1, 2006), Cambridge University Press.

[2] Erickson, G. L., Superalloys 1996, TMS, pp.35-44.

[3] Darolia, R., Lahrman, D.F., Field, R.D., Superalloys 1988, TMS, pp.255-264.

[4] Rae, C. M. F., Karunaratne, M.S.A., Small, et al. Superalloys 2000, TMS, pp.767-776.

[5] Hobbs, R. A., Zhang, L., Rae, C.M.F., Tin, S., Metall. Trans. A, 39 (2008), pp.1014-1025.

[6] Sato, A., Harada, H., Yokokawa, T., et al., Scripta Materialia, 54 (2206), pp.679-1684.

[7] Volek, A., Singer, R.F., Superalloys 2004, TMS, pp.713-718.

[8] Volek, A., Singer, R.F., Buergel, R., et al., Metall. Mater. Trans. A, 2006, vol. 37A, p.405–10.

[9] O'Hara, K., Walston, S., Ross, E., Darolia, R., United States Patent Application Patent No. 5. 482. 789, Application No. 176. 613 (1996).

[10] Rae, C. M. F., Reed, R. C:. (2001), Acta Materialia, 49, pp.4113-4125.

[11] Hobbs, R. A., Zhang, L., Rae, C.M.F., Tin, S., Materials Science and Engineering A, 489 (2008), pp.65-76.

[12] Heckl, A., Rettig, R., Singer, R.F., Metallurgical and Materials Transactions A, 41A (2010), pp.202-211.

[13] Heckl, A., Rettig, R., Cenanovic, S., Journal of Crystal Growth, 312 (2010), pp.2137-2144.

[14] Franke, M. M., Hilbinger, R.M., Heckl, A., Singer, R.F. International Foundry Research, 62 (2010) No. 2.

[15] Heckl, A., Neumeier, S., Singer, R.F. (2010), submitted to Materials Science and Engineering A, in press.

[16] Rettig, R., Heckl, A., Neumeier, S., et al. Defect and Diffusion Forum, 289-292 (2009), pp.101-108.

[17] Rettig, R., Heckl, A., Singer, R.F., Materials Science Forum, in press.

[18] Heckl, A., Singer, R.F., submitted to Metall. Trans., to be published.

[19] D'Souza, N., Dong, H.B., Scripta Materialia, 56 (2007), pp.41-44.

[20] Fuchs, G. E., Boutwell, B.A., Materials Science and Engineering A, 333 (2001), pp.72-79.

[21] Neumeier, S., Pyczak, F., Göken, M., Superalloys 2008, TMS, pp.109-119.

[22] Giamai, A. F., Anton, D.L., Metallurgical Transactions, 16A (1985), p.1997-(2005).

[23] Pyczak, F., Devrient, B., Mughrabi, H., Superalloys 2004, TMS, pp.827-836.

[24] Fuchs, G. E., Boutwell, B.A., JOM, 54 (2002), pp.45-48.

[25] Karunaratne, M. S. A., Cox, D.C., Carter P., Reed R.C., Superalloys 2000, TMS, pp.263-272.

[26] Kearsey, R. M., Beddoes, B.A., Jaansalu, K.M., et al., Superalloys 2004, TMS, pp.801-810.

[27] Caron, P., Superalloys 2000, TMS, pp.737-746.