Microstructural Evolution of Mo-Si-B Ternary Alloys through Heat Treatment at 1800°C


Article Preview

First of all, the as-cast microstructures of Mo-rich Mo-Si-B ternary alloys were investigated around the triple junction point of the primary Mo solid solution, Mo5SiB2 and Mo2B in this work, based on the liquidus projections of the Mo-Si-B system which have been reported in earlier studies. Subsequently, their microstructural evolution through heat treatment was investigated. Since Mo2B crystallizes out during solidification into a primary or secondary phase even though the alloy composition lies in the triangle of Mo-Mo5SiB2-Mo3Si in the Mo-Si-B equilibrium phase diagram, the as-cast microstructures include the non-equilibrated Mo2B in wide compositional ranges. However, Mo2B was completely decomposed during heat treatment at 1800 °C for 24 h and this contributed to the development of homogeneous, fine microstructures. On the other hand, since Mo2B was not decomposed perfectly during 24 h of 1600 °C heat treatment, as-cast microstructures largely remained. Therefore, it is realized that the heat treatment at 1800 °C is necessary to obtain well-developed microstructures of Mo-Si-B alloys.



Main Theme:

Edited by:

M. Heilmaier




K. Yoshimi et al., "Microstructural Evolution of Mo-Si-B Ternary Alloys through Heat Treatment at 1800°C", Advanced Materials Research, Vol. 278, pp. 527-532, 2011

Online since:

July 2011


[1] H. Nowotny, R. Kieffer and F. Benesovsky: Planseeberichte Fuer Pulvermetallurgie 5 (1957), p.86.

[2] C.A. Nunes, R. Sakidja and J.H. Perepezko, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, TMS, Warrendale, PA (1997), p.831 – 839.

[3] C.A. Nunes, R. Sakidja, Z. Dong and J.H. Perepezko: Intermetallics 8 (2000), p.327.

[4] S. Katrych, A. Grytsiv, A. Bondar, P. Rogl, T. Velikanova and M. Bohn: J. Alloy. Comp. 347 (2002), p.94.

DOI: 10.1016/s0925-8388(02)00676-x

[5] Y. Yang and Y.A. Chang: Intermetallics 13 (2005), p.121.

[6] S.T. Kim and J.H. Perepezko: J. Phase Equilib. Diffus. 27 (2006), p.605.

[7] J.H. Schneibel, C.T. Liu, D.S. Easton and C.A. Carmichael: Mater. Sci. Eng. A261 (1999), p.78.

[8] R. Sakidja, J. Myers, S. Kim and J.H. Perepezko: Int. J. Refrac. Met. Hard Mater. 18 (2000), p.193.

[9] J.H. Schneibel, R.O. Ritchie, J.J. Kruzic and P.F. Tortorelli: Metall. Mater. Trans. A 36A (2005), p.525.

[10] J.J. Kruzic, J.H. Schneibel and R.O. Ritchie: Metall. Mater. Trans. A 36A (2005), p.2393.

[11] F. Wang, A. Shan, X. Dong and J. Wu: J. Alloy. Comp. 462 (2008), p.436.

[12] M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch. Somsen, T. Depka, H. -J. Christ, B. Gorr and S. Burk: JOM 61 (July 2009), p.61.

DOI: 10.1007/s11837-009-0106-7

[13] S. -H. Ha, K. Yoshimi, K. Maruyama, R. Tu and T. Goto: Mater. Trans., submitted.

Fetching data from Crossref.
This may take some time to load.