Preliminary Study on Systematic Modeling and Optimal Control of Dual Delivery Nanocarriers for Bone Regeneration


Article Preview

This study is focused on the development of clinically applicable nanocarriers for bone regeneration by establishing a systematic modeling guided nanocarriers development methodology. Firstly a drug release model is built through different release mechanisms to predict the profiles of drugs released from nanospheres. Then a cell response model is built through multiple signaling pathways related to the released drugs to predict the relationship between the drug profiles and the terminal cell phenotypes. Finally the cell response model combined with the drug release model will be employed to optimally predict the relationship between the input and output of the complete model, to establish an entire system with tunable input and output, and finally by optimal control to guide and accelerate the design of the BMP-2 and vancomycin incorporated nanocarriers.



Advanced Materials Research (Volumes 282-283)

Edited by:

Helen Zhang and David Jin






H. M. Peng et al., "Preliminary Study on Systematic Modeling and Optimal Control of Dual Delivery Nanocarriers for Bone Regeneration", Advanced Materials Research, Vols. 282-283, pp. 147-152, 2011

Online since:

July 2011




[1] N. Blow. Nanotechnology in biology: big collaborations for a small world. Nature Methods, 2008, 5(6): 569-74.

[2] N. McCarthy. Take a deep breath. Nat. Rev. Cancer, 2009, 9(11): 771.

[3] S.N. Hochwald. Molecular-targeted therapy for cancer and nanotechnology. Meth. Mol. B., 2010, 624: 11-23.

[4] Y.S. Pek, S. Gao, M.S. Arshad, and et al. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials, 2008, 29(32): 4300-5.

DOI: 10.1016/j.biomaterials.2008.07.030

[5] X. Cheng, Y. Li, Y. Zuo, and et al. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mat. Sci. Eng. C - Bio., 2009, 29(1): 29-35.

DOI: 10.1016/j.msec.2008.05.008

[6] A. Mata, Y. Geng, K.J. Henrikson, and et al. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials, 2010, 31(23): 6004-12.

DOI: 10.1016/j.biomaterials.2010.04.013

[7] E.N. Johnson, T.C. Burns, R.A. Hayda, and et al. Infectious complications of open type III tibial fractures among combat casual tissue. Clin. Infect. Dis., 2007, 45(4): 409-15.

[8] G. Liang, Y. Yang, S.H. Oh, and et al. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Biomaterials, 2005, 26(20): 4265-71.

DOI: 10.1016/j.biomaterials.2004.10.035

[9] S. Kim, X. Zhang, J.A. Zawaski, and et al. The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. Biomaterials, 2009, 30(27): 4743-51.

DOI: 10.1016/j.biomaterials.2009.05.010

[10] S. Kim, Y.X. Liu, M.W. Gaber, and et al. Development of the chitosan-ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. Part B, 2009, 90B(1): 145-55.

DOI: 10.1002/jbm.b.31266

[11] S. Kim, S.K. Nishimoto, and J.D. Bumgardner. A chitosan/beta- glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010, 31(14): 4157-66.

DOI: 10.1016/j.biomaterials.2010.01.139

[12] X. Zhou, X. Wang, R.D. Pal, and et al. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics, 2004, 20(17): 2918-27.

DOI: 10.1093/bioinformatics/bth318

[13] B. Geng, X. Zhou, and Y. S. Hung. Growing Enzyme Gene Networks by Integration of Gene Expression, Motif Sequence and Metabolic Information. Patt. Recog., 2009, 42(4): 557-61.

DOI: 10.1016/j.patcog.2008.09.037

[14] G. Jin, K. Cui, X. Zhou, and S. T. C. Wong. Unraveling the Signal-Transduction Networks in Cancer Metastasis. IEEE Signal Process. Mag., 2009, 26(5): 129-32.

DOI: 10.1109/msp.2009.933384

[15] H. Peng, J. Wen, H. Li, and et al. NFkB pathway modeling for optimal drug combination therapy on multiple myeloma. Proc. World Acad. Sci. Eng. Technol, 2010, 26: 332-8.

[16] H. Peng, J. Wen, H. Li, and et al. Drug Inhibition Profile Prediction for NFκB Pathway in Multiple Myeloma. PLoS ONE, 2011, 6(3): e14750. doi: 10. 1371/journal. pone. 0014750.

DOI: 10.1371/journal.pone.0014750

[17] C. Chang, and K. Merritt. Effect of S. epidermidis on the adherence of Pseudomonas aeruginosa and Proteus mirabilis to poly (methyl methacrylate) and gentamicin-containing PMMA. J. Ortho. Res., 1991, 9(2): 284-8.

DOI: 10.1002/jor.1100090217

[18] C. Chang and K. Merritt. Microbial adherence on poly (methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res., 1992, 26(2): 197-207.

DOI: 10.1002/jbm.820260206

[19] C. Chang and K. Merritt. Infection at the site of implanted materials with and without Preadhered Bacteria. J. Ortho. Res., 1994, 12(4): 526-31.

DOI: 10.1002/jor.1100120409

[20] L.T. Johannes, L.H. Mikael, H.J. Tapio, and L. Murtomaki. Cellular automata model for drug release from binary matrix and reservoir polymeric devices. Biomaterials, 2009, 30(10): 1978-87.

DOI: 10.1016/j.biomaterials.2008.12.028

[21] S.N. Rothstein, W.J. Federspiel, and S.R. Little. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 2009, 30(8): 1657-64.

DOI: 10.1016/j.biomaterials.2008.12.002

[22] P.J. Marie, F. Debiais, and E. Hay. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol. Histopathol., 2002, 17(3): 877-85.

[23] G. Rawadi, B. Vayssiere, F. Dunn, and et al. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Miner. Res., 2003, 18(10): 1842-53.

DOI: 10.1359/jbmr.2003.18.10.1842

[24] Z. Xia. Semisupervised Drug-Protein Interaction Prediction from Heterogeneous Spaces. OSB2009, 11: 123-31.

[25] K. Deb and H. Gupta. Introducing robustness in multi-objective optimization. Evol. Comput., 2006, 14(4): 463-94.

In order to see related information, you need to Login.