Structural Characteristics and Dielectric Properties of Nd-Doped SrTiO3 Ceramics by Introducing Ti Vacancies for Valence Compensation


Article Preview

By introducing Ti vacancies for valence compensation, Nd-doped SrTiO3 ceramics yielding the formula NdxSr1-xTi1-x/4O3 (0≤x≤0.200) were successfully prepared by solid state reaction route in air. All the ceramics had single perovskite structure indexed by XRD profiles, while the symmetry changed from cubic to tetragonal with increasing x value. The grain size markedly decreased from ~30 μm for un-doped SrTiO3 ceramics to ~1 μm for NdxSr1-xTi1-x/4O3 ceramics with x=0.024, which was observed by scanning electron microscopy (SEM). The dielectric properties were measured at 1 kHz in ambient temperature. The dielectric constant was found to be leading to a maximum value of 5410 for as-sintered sample with x=0.104. The breakdown strength of all NdxSr1-xTi1-x/4O3 samples was examined to be higher than 10 kV/mm. These results indicated that Nd-doped SrTiO3 ceramics could be used to fabricate high voltage capacitors with enhanced energy storage density.



Advanced Materials Research (Volumes 284-286)

Main Theme:

Edited by:

Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and Jinglong Bu




Z. Y. Shen et al., "Structural Characteristics and Dielectric Properties of Nd-Doped SrTiO3 Ceramics by Introducing Ti Vacancies for Valence Compensation", Advanced Materials Research, Vols. 284-286, pp. 1435-1441, 2011

Online since:

July 2011




[1] A. Tkach and P.M. Vilarinho, Scandium doped strontium titanate ceramics: structure, microstructure, and dielectric properties, Bol. Soc. Esp. Ceram. 47 (2008) 238-241.


[2] T. Shimada, K. Kura and S. Ohtsuki, Dielectric properties and far infrared reflectivity of lanthanum aluminate-strontium titanate ceramics, J. Eur. Ceram. Soc. 26 (2006) 2017-(2021).


[3] R.C. Neville, B. Hoeneisen and C.A. Mead, Permittivity of strontium titanate, J. Appl. Phys. 43 (1972) 2124-2131.


[4] Y.M. Chiang and T. Takagi, Grain-boundary chemistry of barium titanate and strontium titanate: II, origin of electrical barriers in positive-temperature-coefficient thermistors, J. Am. Ceram. Soc. 73 (1990) 3286-3291.


[5] D.S. Krueger, R.V. Shende and S.J. Lombardo, Effect of porosity on the electrical properties of Y2O3-doped SrTiO3 internal boundary layer capacitors, J. Appl. Phys. 95 (2004) 4310-4315.


[6] Z.Y. Shen, H. Liu, Z. Wu, Z. Yao, M. Cao and D. Luo, Preparation and dielectric properties of Sr (Ti0. 95Zr0. 05)O3 ceramics doped with CaO-TiO2-SiO2(CTS), Mater. Sci. Eng. B 136 (2007) 11-14.


[7] K.A. Müller and H. Burkard, SrTiO3: An intrinsic quantum paraelectric below 4K, Phys. Rev. B 19 (1979) 3593-3602.


[8] S. Chao and F. Dogan, BaTiO3-SrTiO3 Layered Dielectrics for Energy Storage, Mater. Lett. (2010) DOI: 10. 1016/j. matlet. 2010. 12. 043.

[9] Q. Zhang, L. Wang, J. Luo, Q. Tang and J. Du, Ba0. 4Sr0. 6TiO3/MgO Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line Int. J. Appl. Ceram. Technol. 7 (2010) E124-E128.


[10] W. Huebner, S.C. Zhang, B. Gilmore, M.L. Krogh, B.C. Schultz, R.C. Pate, L.F. Rinehart and J.M. Lundstrom, High breakdown strength, multilayer ceramics for compact pulsed power applications, 12th IEEE International Pulsed Power Conference 2 (1999).


[11] A.D. Hilton and B.W. Ricketts, Dielectric properties of Ba1-xSrxTiO3 ceramics, J. Phys. D: Appl. Phys. 29 (1996) 1321-1325.

[12] G. Triani, A.D. Hilton and B.W. Ricketts, Dielectric energy storage in PbxSr1-xTiO3 ceramics, J. Mater. Sci.: Mater. Electron. 12 (2001) 17-20.

[13] S. Nishigaki, K. Murano and A. Ohkoshi, Dielectric Properties of Ceramics in the System (Sr0. 50Pb0. 25Ca0. 25)TiO3-Bi2O3·3TiO2 and Their Applications in a High-Voltage Capacitor, J. Am. Ceram. Soc. 65 (1982) 554-560.


[14] R.D. Shannon, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Acta Cryst. A32 (1976) 751-767.

[15] JCPDF: Card No. 35-0734.

[16] A. Tkach, P.M. Vilarinho and A.L. Kholkin, Structure-microstructure-dielectric tunability relationship in Mn-doped strontium titanate ceramics, Acta Mater. 53 (2005) 5061-5069.


[17] P. Singh, O. Parkash and D. Kumar, Electrical conduction behavior of La and Mn substituted strontium titanate, J. Appl. Phys. 99 (2006) 123704.


[18] I. Burn and S. Neirman, Dielectric properties of donor-doped polycrystalline SrTiO3, J. Mater. Sci. 17 (1982) 3510-3524.


[19] X. Wang, X. Lu, C. Zhang, X. Wu, W. Cai, S. Peng, H. Bo, Y. Kan, F. Huang and J. Zhu, Oxygen-vacancy-related high-temperature dielectric relaxation in SrTiO3 ceramics, J. Appl. Phys. 107 (2010) 114101.


[20] L.C. Walters and R. E. Grace, Diffusion of point defects in strontium titanate, J. Phys. Chem. Solids 28 (1967) 245-248.

[21] F.D. Morrison, A.M. Coats, D.C. Sinclair and A.R. West, Charge Compensation Mechanisms in La-Doped BaTiO3, J. Electroceram. 6 (2001) 219-232.

[22] F.D. Morrison, D.C. Sinclair and A.R. West, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics, Int. J. Inorg. Mater. 3 (2001) 1205-1210.


[23] D. Hennings and G. Rosenstein, X-ray structure investigation of lanthanum modified lead titanate with A-site and B-site vacancies, Mater. Res. Bull. 7 (1972) 1505-1513.


[24] Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler and C. Christodoulou, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics, PPC-2003: 14th IEEE International Pulsed Power Conference 1 (2003).