Lu1.8Y0.2SiO5:Ce and LaCl3:Ce Scintillators for Gamma-Ray Detection

Abstract:

Article Preview

The scintillation properties of Lu1.8Y0.2SiO5:Ce (LYSO:Ce) and LaCl3:Ce scintillators were studied under g-ray excitation. For 662 keV g-rays (137Cs source), energy resolution of 4.5% obtained for LaCl3:Ce coupled to XP5200B PMT is much better than that of 8.2% for LYSO:Ce. The estimated photofraction of 26.1% at 662 keV for LYSO:Ce is higher than that of 15.7 % for LaCl3:Ce. The non-proportionality of the light yield and energy resolution versus g-ray energy were measured and the intrinsic resolution of the crystals was calculated. The coincidence timing resolution, obtained in this work for 511 keV annihilation quanta, was 222 and 229 ps, respectively, for LYSO:Ce – and LaCl3:Ce – based detectors in coincidence with a BaF2 detector.

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Main Theme:

Edited by:

Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and Jinglong Bu

Pages:

2064-2069

DOI:

10.4028/www.scientific.net/AMR.284-286.2064

Citation:

W. Chewpraditkul et al., "Lu1.8Y0.2SiO5:Ce and LaCl3:Ce Scintillators for Gamma-Ray Detection", Advanced Materials Research, Vols. 284-286, pp. 2064-2069, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] C.W.E. van Eijk: Nucl. Instrum. Methods Phys. Res. A, Vol. 460 (2001), p.1.

[2] K.W. Kramer: J. Mater. Chem., Vol. 16 (2006), p.2273.

[3] M. Nikl: Meas. Sci. Technol. Vol. 17 (2006), p. R37.

[4] P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik and C. Pedrini: Inorganic Scintillators for Detector Systems, the Netherlands, Springer (2006).

[5] C.L. Melcher and J.S. Schweitzer: IEEE Trans. Nucl. Sci. Vol. 39 (1992), p.502.

[6] D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker and R.E. Muenchausen: J. Appl. Phys. Vol. 88, no. 12 (2000), p.7360.

[7] E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk K. Kramer and H.U. Gudel: Appl. Phys. Lett. Vol. 77 (2000), p.1467.

[8] E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Kramer and H.U. Gudel: Appl. Phys. Lett. Vol. 79 (2001), p.1573.

[9] Z. Guzik, S. Borsuk, K. Traczyk and M. Plominski:. IEEE Trans. Nucl. Sci. Vol. 53, no. 1 (2006), p.231.

[10] M. Bertolaccini, S. Cova and C. Bussolatti: A technique for absolute measurement of the effective photoelectron per keV yield in scintillation counters, in Proc. Nuclear Electronics Symp., Versailles, France (1968).

[11] M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski and S.O. Flyckt: IEEE Trans. Nucl. Sci. Vol. 44, no. 3 (1997), p.1052.

DOI: 10.1109/23.603803

[12] M. Moszynski, M. Kapusta, D. Wolski, M. Balcerzyk, S.O. Flyckt, P. Lavoute, C. Marmonier and H. Mach: IEEE Trans. Nucl. Sci. Vol. 51 (2004), p.1701.

DOI: 10.1109/tns.2004.832322

[13] M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengeshe and J.D. Valentine: Nucl. Instrum. Methods Phys. Res. A Vol. 484 (2002), p.259.

[14] P. Dorenbos, J.T.M. de Haas and C.W.E. van Eijk: IEEE Trans. Nucl. Sci. Vol. 42, no. 3 (1995), p.2190.

[15] L. Gerward, N. Guilbert, K.B. Jensen and H. Levring: Rad. Phys. And Chem. Vol. 71 (2004) p.653.

In order to see related information, you need to Login.