Spontaneous Oxidation Route to Se/Te Alloys Nanorods at Room Temperature


Article Preview

The Se/Te alloys nanorods have been synthesized through spontaneous oxidation of NaHE (E = Se and Te) by dissolved oxygen at room temperature. Phase structures and morphologies of the Se/Te products are investigated by XRD, EDS, SEM, and TEM. The composition of Se/Te alloys could be tuned via simply changing the value of n (n denoted as molar ratio of the starting reagent Se to Te). In order to obtain pure Se/Te alloys nanorods, the value of n should be higher than 3. Otherwise, by-product t-Te would be formed. A possible nucleation and growth mechanism of the Se/Te nanorods was discussed.



Advanced Materials Research (Volumes 284-286)

Main Theme:

Edited by:

Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and Jinglong Bu




R. B. Zheng et al., "Spontaneous Oxidation Route to Se/Te Alloys Nanorods at Room Temperature", Advanced Materials Research, Vols. 284-286, pp. 680-683, 2011

Online since:

July 2011




[1] B.T. Mayers, K. Liu, D. Sunderland adn Y.N. Xia, Chem. Mater. Vol. 15 (2003), p.3852.

[2] V.B. Ufimtsev, V.B. Osvensky, V.T. Bublik, T.B. Sagalova and O.E. Jouravlev, Adv. Perf. Mater. Vol. 4 (1997), p.189.

DOI: https://doi.org/10.1023/a:1008695513708

[3] K. Ariki and T. Tanaki, Jpn. J. Appl. Phys. Vol. 11 (1972), p.472.

[4] B. Gates, Y.Y. Wu, Y.D. Yin, P.D. Yang and Y. N. Xia, J. Am. Chem. Soc. Vol. 123 (2001), p.11500.

[5] X.C. Jiang, B. Mayers, T. Herricks and Y.N. Xia, Adv. Mater. Vol. 15 (2003), p.1740.

[6] R.I. Baitser, V. V. Vainberg and S. S. Varshava, J. Phys. IV Vol. 6 (1996), p.429.

[7] B. Gates, Y. D. Yin and Y. N. Xia, J. Am. Chem. Soc. Vol. 122 (2000), p.12582.

[8] Y. J. Zhu, W. W. Wang, R. J. Qi and X. L. Xu, Angew. Chem. Int. Edit. Vol. 43 (2004), p.1410.

[9] M. S. Mo, J. H. Zeng, X. M. Liu, W. C. Yu, S. Y. Zhang and Y. T. Qian, Adv. Mater. Vol. 14 (2002), p.1658.

[10] B. Mayers, B. Gates, Y.D. Yin and Y.N. Xia, Adv. Mater. Vol. 13 (2001), p.1380.

[11] D.H. Qin, J.W. Zhou and C. Luo, Nanotechnology, Vol. 17 (2006), p.674.

[12] H. Tao, X.D. Shan and D.P. Yu, Nanoscale Res Lett. Vol. 4 (2009), p.963.

[13] G. Kaur and M.S. Bakshi, J. Phys. Chem. C, Vol. 114 (2010), p.143.

[14] R.B. Zheng, W.L. Cheng, E.K. Wang and S.J. Dong, Chem. Phys. Lett. Vol. 395 (2004), p.302.

[15] A. L. Rogach, L. Katsikas, A. Kornowski, D. S. Su, A. Eychmuller and H. Weller, Ber. Bunsen. Phys. Chem. Vol. 100 (1996), p.1772.

[16] Z. Y. Tang, Y. Wang, K. Sun and N. A. Kotov, Adv. Mater. Vol. 17 (2005), p.395.

[17] Z. P. Liu, Z. K. Hu, Q. Xie, B. J. Yang, J. Wu and Y. T. Qian, J. Mater. Chem. Vol. 13 (2003), p.159.

[18] R. B. Zheng, S. J. Guo and S. J. Dong, Inorg. Chem. Vol. 46 (2007), p.6920.

Fetching data from Crossref.
This may take some time to load.