Preparation and Properties of Fluoride-Coated Mg-Zn-Zr Alloy for Biodegradable Intravascular Stents

Abstract:

Article Preview

In order to improve the corrosion resistance, the samples made of Mg-Zn-Zr alloy were immersed in 20% or 40% hydrofluoric acid (HF) aqueous solutions for different intervals to prepare magnesium fluoride (MgF2) coating on the surface. By comparing the surface morphologies, the samples immersed in 20% HF solution for 6 h on which fine particles in nanoscale covered was selected for the further study. Immersion and electrochemical tests showed that the dense MgF2 coating would improve the corrosion resistance of Mg-Zn-Zr alloy. The corrosion current density (icorr) decreased from 2.10 μA·cm-2 to 0.05 μA·cm-2. The influence of HF treatment on the cytocompatibility was evaluated in vitro. There were significant differences in the cell number between the naked and coated samples after culturing for 3 and 5 days (p<0.05). All the results demonstrate that HF treatment is a promising approach to improve the corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy used as intravascular stents.

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Edited by:

Jinglong Bu, Pengcheng Wang, Liqun Ai, Xiaoming Sang, Yungang Li

Pages:

1970-1975

DOI:

10.4028/www.scientific.net/AMR.287-290.1970

Citation:

X. Y. Ye et al., "Preparation and Properties of Fluoride-Coated Mg-Zn-Zr Alloy for Biodegradable Intravascular Stents", Advanced Materials Research, Vols. 287-290, pp. 1970-1975, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.