A Ductile UFG Al Alloy via Cryomilling and Quasi-Isostatic Forging


Article Preview

Mechanical milling of Al alloy powder in liquid nitrogen leads to a large reduction in the scale of the microstructure and results in material with high thermal stability and strength. However, it is important to consolidate the powder and achieve bulk material with sufficient toughness and ductility for structural applications. In this investigation, hot isostatic pressing, followed by quasiisostatic forging and hot rolling, were performed to fabricate Al 5083 plate with a predominantly ultra-fine grained microstructure. Plate produced in this way possessed enhanced tensile strength and ductility, exceeding that of conventionally processed material.



Advanced Materials Research (Volumes 29-30)

Edited by:

Deliang Zhang, Kim Pickering, Brian Gabbitas, Peng Cao, Alan Langdon, Rob Torrens and Johan Verbeek




A.P. Newbery et al., "A Ductile UFG Al Alloy via Cryomilling and Quasi-Isostatic Forging", Advanced Materials Research, Vols. 29-30, pp. 21-29, 2007

Online since:

November 2007




[1] A.P. Newbery, B.Q. Han, E.J. Lavernia, C. Suryanarayana, J.A. Christodoulou, in: Materials Processing Handbook, edited by J.R. Groza, J.F. Shackelford, E.J. Lavernia, M.T. Powers, CRC Press, Boca Raton, FA (2007). 2 μm 2 μm 2 μm (c) (a) (b).

DOI: https://doi.org/10.1201/9780849332166

[2] D.B. Witkin, E.J. Lavernia: Prog. Mater. Sci., Vol. 51 (2006), p.1.

[3] S. Billard, J.P. Fondere, B. Bacroix, G.F. Dirras: Acta Mater., Vol. 54 (2006), p.411.

[4] D. Witkin, B.Q. Han, E.J. Lavernia: Metall. Mater. Trans. A, Vol. 37 (2006), p.185.

[5] H.W. Chan: Materials & Design, Vol. 9 (1988), p.355.

[6] Webpage: Aluminum Alloys in Military Vehicles and Equipment, Key to Metals AG, http: /www. key-to-nonferrous. com/default. aspx?ID=CheckArticle&LN=EN&NM=102.

[7] A.P. Newbery, S.R. Nutt, E.J. Lavernia: JOM, Vol. 58 (2006), p.56.

[8] E399 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, ASTM International, West Conshohocken, PA (2005).

DOI: https://doi.org/10.1520/e0399-12

[9] M.L. Bauccio (ed. ), Metals Reference Book, ASM International, Materials Park, OH (1993).

[10] G. Lucadamo, N.Y.C. Yang, C.S. Marchi, E.J. Lavernia: Mater. Sci. Eng. A, Vol. 430 (2006), p.230.

[11] V.L. Tellkamp, A. Melmed, E.J. Lavernia: Metall. Mater. Trans. A, Vol. 32 (2001), p.2335.

[12] F. Tang, M. Hagiwara, J.M. Schoenung: Scripta Mater., Vol. 53 (2005), p.619.

[13] D. Witkin, E.J. Lavernia, in: Processing and Properties of Structural Nanomaterials, edited by L.L. Shaw, C. Suryanarayana, R.S. Mishra, TMS, Warrendale, PA (2003).

[14] B.Q. Han, Z. Lee, D. Witkin, S. Nutt, E.J. Lavernia: Metall. Mater. Trans. A, Vol. 36 (2005), p.957.

[15] P.S. Pao, H.N. Jones, C.R. Feng, D.B. Witkin, E.J. Lavernia, in: Ultrafine Grained Materials IV, edited by Y.T. Zhu, TMS, Warrendale, PA, San Antonio, TX (2006).

[16] B. Ahn, A.P. Newbery, E.J. Lavernia S.R. Nutt: Mater. Sci. Eng. A, Vol. 463 (2007), p.61.

[17] C. San Marchi, N.Y.C. Yang, G. Lucadamo, S.L. Robinson, E.J. Lavernia, in: Fracture of Nano and Engineering Materials and Structures, edited by E.E. Gdoutos, Springer, Netherlands (2006).

[18] P.S. Pao, SSM Program Progress Report, University of California, Davis (2006).

[19] J.E. Hatch (ed. ), Aluminum: Properties and Physical Metallurgy, ASM International, Materials Park, OH (1984).

Fetching data from Crossref.
This may take some time to load.