Improving Hygrothermal Performance in Epoxy-Biofibre Composites

Abstract:

Article Preview

Confocal microscopy and water diffusivity measurements were used to characterise the development of defects in biofibre-reinforced composite materials. Biofibres swelled more than the matrix when the specimen was immersed in water, but the associated distortion of the matrix rarely caused defects. The biofibres shrank faster than the matrix when the specimen was dried in air, causing debonding at the fibre-matrix interfaces and microcracks within the fibres. We started with coarse technical fibres from the leaves of harakeke (Phormium tenax), treated a portion with 1% NaOH, and pulped a portion at 170 °C. Water diffusivities for the corresponding composites increased over the first 3 wet-dry cycles, particularly for the composite made with untreated fibre, but were too small to be of concern for the composite made from pulped fibre.

Info:

Periodical:

Advanced Materials Research (Volumes 29-30)

Edited by:

Deliang Zhang, Kim Pickering, Brian Gabbitas, Peng Cao, Alan Langdon, Rob Torrens and Johan Verbeek

Pages:

287-290

DOI:

10.4028/www.scientific.net/AMR.29-30.287

Citation:

R. H. Newman et al., "Improving Hygrothermal Performance in Epoxy-Biofibre Composites", Advanced Materials Research, Vols. 29-30, pp. 287-290, 2007

Online since:

November 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.