Mechanical Properties of Micro-Porous Metals Produced by Space-Holding Sintering


Article Preview

Micro-porous nickel foams with an open cell structure were fabricated by the space-holding sintering. The average pore size of the micro-porous nickel specimens ranged from 30 μm to 150 μm, and the porosity ranged from 60 % to 80 %. The porous characteristics of the nickel specimens were observed using scanning electron microscopy (SEM). The mechanical properties were studied using compressive tests. For comparison, macro-porous nickel foams prepared by the chemical vapour deposition method with pore sizes of 800 μm and 1300 μm and porosity of 95 % were also presented. Results indicated that the ratio value of 6 and higher for the specimen length to cell size (L/d) is satisfying for obtaining stable compressive properties. The micro-porous nickel specimens exhibited different deformation behaviour and dramatically increased mechanical properties, compared to those of the macro-porous nickel specimens.



Advanced Materials Research (Volumes 29-30)

Edited by:

Deliang Zhang, Kim Pickering, Brian Gabbitas, Peng Cao, Alan Langdon, Rob Torrens and Johan Verbeek




T. Banno et al., "Mechanical Properties of Micro-Porous Metals Produced by Space-Holding Sintering", Advanced Materials Research, Vols. 29-30, pp. 75-78, 2007

Online since:

November 2007




[1] J. Banhart and J. Baumeister: J. of Mater. Sci., Vol. 33, (1998), p.1431.

[2] S.K. Maiti, L.J. Gibson, M.F. Ashby: Acta Mater. Vol. 32, (1984), p. (1963).

[3] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46, (1998), p.2139.

[4] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

[5] A.E. Simone, L.J. Gibson: Acta Mater. Vol. 46, (1998), p.3929.

[6] Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, K. Higashi: Mater. Sci. Eng., A272, (1999), p.455.

DOI: 10.1002/(sici)1527-2648(200004)2:4<184::aid-adem184>;2-w

[7] T.G. Nieh, J. H. Kinney, J. Wadsworth, A.J.C. Ladd: Scripta Mater. Vol. 38, (1998), p.1487.

[8] J.L. Grenestedt, K. Tanaka: Scripta Mater. Vol. 40, (1999), p.71.

[9] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina: Scripta Mater. Vol. 45, (2001), p.1147.

[10] L.J. Gibson, M.F. Ashby: Cellular Solids, Structure and Properties Cambridge University Press, (1997).

[11] H. Bart-smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, H.N.G. Wadley: Acta Mater. Vol. 46, (1998), p.3583.

[12] P.H. Thornton, C.L. Magee: Metall. Trans. Vol. 6A, (1975), p.1253.

[13] F. Simancik, J. Kovacik, N. Sediakova: Proc. of the 1998 Powder Metall. World Cong. & Exhibit. (European Powder Metall. Association, UK, 5, 1998).

[14] J. Banhart: Prog. Mater. Sci. Vol. 46, (2001), p.559.

[15] T. Miyoshi, M. Itoh, T. Mukai, H. Kanahashi, H. Kohzu, S. Tanabe, K. Higashi: Scripta Mater. Vol. 41 (1999), p.1055.

[16] N.G. Davis, J. Teisen, C. Schuh, D.C. Dunand: J. Mater. Res. Vol. 16, (2001), p.1508.

[17] E.W. Andrews, G. Gioux, P. Onck, L.J. Gibson: Inter. J. Mech. Sci., Vol. 43 (2001), p.701.

[18] V. Paserin, S. Marcuson, J. Shu, D.S. Willinson: Adv. Eng. Mater., Vol. 6, (2004).

Fetching data from Crossref.
This may take some time to load.