A Model for the Effects of Strain Rate and Temperature on the Deformation Behavior of Ultrafine-Grained Metals


Article Preview

A theoretical model is developed to account for the effects of strain rate and temperature on the deformation behavior of ultrafine-grained fcc Cu. Three mechanisms, including dislocation slip, grain boundary diffusion, and grain boundary sliding are considered to contribute to the deformation response simultaneously. Numerical simulations show that the strain rate sensitivity increases with decreasing grain size and strain rate, and that the flow stress and tensile ductility increase with either increasing strain rate or decreasing deformation temperature.



Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu




Z. L. Xie et al., "A Model for the Effects of Strain Rate and Temperature on the Deformation Behavior of Ultrafine-Grained Metals", Advanced Materials Research, Vols. 291-294, pp. 1173-1177, 2011

Online since:

July 2011




[1] Y.M. Wang and E. Ma: Appl. Phys. Lett. Vol. 83 (2003), p.3165.

[2] X. Wu, Y.T. Zhu, M.W. Chen and E. Ma: Scripta Mater. Vol. 54 (2006), p.1685.

[3] K.S. Kumar, H.V. Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.5743.

[4] L. Lu, S.X. Li and K. Lu: Scripta Mater. Vol. 45 (2001), p.1163.

[5] F. D. Torre and M. Vicoria: Acta Mater. Vol. 50 (2002), p.3957.

[6] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop and S. Suresh: Acta Mater. Vol. 51 (2003), p.5159.

[7] F.D. Torre, E.V. Pereloma and C.H. J Davies: Scripta Mater. Vol. 51 (2004), p.367.

[8] G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev and I.V. Aleksandrov: Nanostruct. Mater. Vol. 9 (1997), p.447.

[9] Y.M. Wang and E. Ma: Acta Mater. Vol. 52 (2004), p.1699.

[10] H. S Kim and Y. Estrin: Acta Mater. Vol. 53 (2005), p.765.

[11] S. Cheng, J.A. Spencer and W.W. Milligan: Acta Mater. Vol. 51 (2003), p.4505.

[12] R.L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

[13] H. Conrad and J. Narayan: Scripta Mater. Vol. 42 (2000), p.1025.

[14] Y. Estrin, in: A.S. Krausz, K. Krausz (Eds), Unified constitutive Laws of Plastic Deformation, Academic Press, 1996, p.69.

DOI: https://doi.org/10.1016/b978-012425970-6/50006-0

[15] Q. Wei, S. Cheng, K.T. Ramesh and E. Ma: Mater. Sci. Eng. A Vol. 381 (2004), p.71.

[16] Y. Estrin and L.P. Kubin: Acta Metal. Mater. Vol. 38 (1990), p.697.

[17] M.J. Kobrinsky and C.V. Thompson: Acta Mater. Vol. 48 (2000), p.625.

[18] Y. Estrin, L.S. Tóth, A. Molinari and Y. Bréchet: Acta Mater. Vol. 46 (1998), p.5509.

[19] R. Lapovok, F.D. Torre and J. Sandlin: J. Mech. Phys. Solids. Vol. 53 (2005), p.729.

[20] R.A. Masumura, P.M. Hazzledine and C. S. Pande: Acta Mater. Vol. 46 (1998), p.4527.