A Model for the Effects of Strain Rate and Temperature on the Deformation Behavior of Ultrafine-Grained Metals

Abstract:

Article Preview

A theoretical model is developed to account for the effects of strain rate and temperature on the deformation behavior of ultrafine-grained fcc Cu. Three mechanisms, including dislocation slip, grain boundary diffusion, and grain boundary sliding are considered to contribute to the deformation response simultaneously. Numerical simulations show that the strain rate sensitivity increases with decreasing grain size and strain rate, and that the flow stress and tensile ductility increase with either increasing strain rate or decreasing deformation temperature.

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu

Pages:

1173-1177

DOI:

10.4028/www.scientific.net/AMR.291-294.1173

Citation:

Z. L. Xie et al., "A Model for the Effects of Strain Rate and Temperature on the Deformation Behavior of Ultrafine-Grained Metals", Advanced Materials Research, Vols. 291-294, pp. 1173-1177, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.