Experimental Verification of Decentralized Approach for Modal Identification Based on Wireless Smart Sensor Network

Abstract:

Article Preview

This paper provides an experimental verification of decentralized approach for modal test and analysis of a 30 meters long railway overpass bridge. 11 Imote2 smart sensor nodes were implemented on the WSSN. In order to compare the identification precision of different topologies, acceleration responses were obtained under centralized and 3 different decentralized topologies. Local modal parameters were estimated by NExT/ERA within each local group; true modes were then distinguished from spurious modes by EMAC and finite-element analysis. In order to estimate global mode shape, a least square method was used for calculating the normalization factor. Then the global mode shapes were determined by normalization factors and local mode shapes. The result demonstrates that the more overlapping nodes in each group, the more accurate the global mode shape will be; the decentralized approach is workable for modal test of large-scale bridge.

Info:

Periodical:

Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu

Pages:

3-11

DOI:

10.4028/www.scientific.net/AMR.291-294.3

Citation:

X. J. Ye et al., "Experimental Verification of Decentralized Approach for Modal Identification Based on Wireless Smart Sensor Network", Advanced Materials Research, Vols. 291-294, pp. 3-11, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.