Development of Processing Maps for 3003 Al Alloy


Article Preview

The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300 °C-380 °C and 1.0-10.0 s-1. DRX occurs extensively in the temperature range of 450-500 °C and at the strain rate of 10.0 s-1. The optimum parameters of hot working for 3003 Al alloy at the strain of 0.6 are confined at 500 °C and 10.0 s-1 with the highest efficiency (37%).



Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu




G. Q. Chen et al., "Development of Processing Maps for 3003 Al Alloy", Advanced Materials Research, Vols. 291-294, pp. 306-310, 2011

Online since:

July 2011




[1] B. Luan, T. Le, J. Nagata: Surf. Coat. Technol. Vol. 186 (2004), p.431.

[2] R. Salghi, L. Bazzi, B. Hammouti, A. Bendou, A. Addie, S. Kertit: Prog. Org. Coat. Vol. 51 (2004) p.113.

[3] J. Lacaze, S. Tierce, M.C. Lafont, Y. Thebault, N. Pébère, G. Mankowski, C. Blanc, H. Robidou, D. Vaumousse, D. Daloz: Mater. Sci. Eng. A, Vol. 413–414 (2005) p.317.


[4] H.W. Huang, B.L. Ou: Mater. Sci. Eng. A, Vol. 30 (2009) p.2685.

[5] C.L. Yeh, Y.F. Chen, C.Y. Wen, K.T. Li: Thermal Fluid Sci. Vol. 27 (2003) p.271.

[6] G.A. Zhang, L.Y. Xu, Y.F. Cheng: Corrosion Science, Vol. 5 (2009) p.283.

[7] W.C. Liu, T.J. Zhai, G. Morris: Scripta Materialia, Vol. 51 (2004) p.83.

[8] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Trans. A, Vol. 15A (1984) p.1883.

[9] Raj Rishi: Metall Trans A Phys Metal Mater Sci. Vol. 12 (1981) p.1089.

[10] N. Srinivasan, Y.V.R.K. Prasad: J Mater Process Technol. Vol. 51 (1995) p.171.

[11] A.A. Omar, J.M. Cabrera, J.M. Prado: Scr Mater. Vol. 34 (1996) p.1303.

[12] G.S. Fu, W.Z. Chen, and K.W. Qian: The Chinese Journal of Nonferrous Metals. Vol. 12 (2002) p.269 (In Chinese).

[13] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, A.D. Rollett: Mater Sci Eng. Vol. A238(1997) p.219.


[14] T. Sakai, C. Takahashi: Mater Trans JIM. Vol. 32 (1991) p.375.

[15] Y.V.R.K. Prasad: J. Mater. Process. Vol. 12 (2003) p.638.

[16] Y.V.R.K. Prasad, K.P. Rao: Mater. Sci. Eng. Vol. A 391 (2005) p.141.

[17] O. Sivakesavam, Y.V.R.K. Prasad:. Mater. Sci. Eng. Vol. A 362 (2003) p.118.

[18] Y.V.R.K. Prasad, T. Seshacharyulu: Int. Mater. Rev. Vol. 43 (1998) p.243.

[19] M.S.V.S. Narauana, R.B. Nageswara, B.P. Kashyap: Int Mater Rev, Vol. 45 (2000) p.15.

[20] S. Ramanathan, R. Karthikeyan, G. Ganesan: Mater. Sci. Eng. Vol. A 441 (2006) p.321.

Fetching data from Crossref.
This may take some time to load.