Effect of Corrosive Medium on the Corrosion Resistance of FeCrMoCB Amorphous Alloy Coating


Article Preview

The purpose of this study is to investigate the electrochemical properties of Fe44Cr16Mo16C18B6 amorphous alloy coating fabricated using high velocity oxygen fuel (HVOF) technology in 2.0M HCl and NaOH solution at room temperature(25°C). Based on the potentiodynamic polarization curves and Electrochemical Impedance Spectroscopy(EIS) testing results of coating in aqueous solutions of HCl and NaOH, the corrosion resistance of Fe44Cr16Mo16C18B6 amorphous alloy coating in HCl solution was superior to that in NaOH solution. The icorr was 1.487×10-5A·cm-2 in HCl solution and 1.107×10-4A·cm-2 in NaOH solution, while the Rt reach to 5.789×104Ω·cm2 and 9780Ω·cm2, respectively. On the other hand, these corrosion phenomenon could be better interpreted by R(Q(R(RQW)))(RL) and R(RL)(Q(R(CW))) equivalent circuit model, which were different from that of other Fe-based amorphous alloys in HCl and NaOH solution, respectively.



Advanced Materials Research (Volumes 291-294)

Edited by:

Yungang Li, Pengcheng Wang, Liqun Ai, Xiaoming Sang and Jinglong Bu






Q. J. Chen et al., "Effect of Corrosive Medium on the Corrosion Resistance of FeCrMoCB Amorphous Alloy Coating", Advanced Materials Research, Vols. 291-294, pp. 65-71, 2011

Online since:

July 2011




[1] Q. Meng, A.L. Moran, N. Tailleart, M.A. Jakab and J.R. Scully: Proceeding of the Tri-Service Corrosion Conference, Orlando, Florida, (2005).

[2] C.J. Li: Chin. Surf. Eng. Vol. 4 (1996), P. 29.

[3] J. Kawakita, S. Kuroda and T. Kodama: Sur. Coat. Technol. Vol. 166 (2003), P. 17.

[4] A. P. Wang, X.C. Chang, W.L. Hou and J.Q. Wang: Mater. Sci. Eng. A Vol. 449-451(2007), P. 277.

[5] K. Hashimoto, F.E. Luborsky. Amorphous Metallic Alloys, Butterworths Monographs in Materials Press, London, (1983).

[6] S. Pang, T. Zhang, K. Asami and A. Inoue: J. Mater. Res. Vol. 17 (2002), P. 701.

[7] S. Pang, K. Asami, A. Inoue and T. Zhang: Act. Mater. Vol. 50 (2002), P. 489.

[8] Y.L. Chou, J.W. Yeh and H.C. Shih: Corros. Sci. Vol. 52 (2010), P. 2571.

[9] K. Hashimoto, N. Kumagai and H. Yoshioka: Corros. Sci. Vol. 35 (1993), P. 363.

[10] M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto: Corros. Sci. Vol. 38 (1996), P. 2137.

[11] U. Hoppe, Richard, K. Brow, D. llieva, P. jovari and A.C. Hannon: J. Non-Cryst. Solids Vol. 352 (2006), P. 3179.

[12] C. Sun, R. Hui, W. Qu and S. Yick: Corros. Sci. Vol. 51 (2009), P. 2508.

[13] Q. Wang, G.F. Huang, J. Ye: Mining and Metallurgical Engineering. Vol. 4(2007), P. 67 chinese.

[14] T. J. Pan, W.M. Lu, Y. J. Ren, W.T. Wu and C.L. Zeng: Oxid. Met. Vol. 72 (2009), P. 179.

[15] C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh and H.C. Shih: Corros. Sci. Vol. 50(2008), P. (2053).

[16] C.N. Cao and J.Q. Zhang: An introduction to electrochemical impedance spectroscopy (Science Publications, Beijing 2002).

[17] J.H. GUO, J.W. WU, X.J. NI, D.R. Li, F.Z. Lian and Z.C. Lu: Acta. Metall. Sin. Vol. 43 (2007), P. 780 chinese.

[18] V. Afshari and C. Dehghanian: Corros. Sci. Vol. 51 (2009), P. 1844.

[19] G.T. Wu, C.S. Wang, X.B. Zhang, H.S. Yang, Z.F. Qi,P.M. He and W.Z. Li: J. Electrochem. Soc. Vol. 146 (1999), P. 1696.

[20] Q.J. Chen, L.L. Hu, X.L. Zhou and X.Z. Hua: Rare Met. Mater. Eng. 2010, accepted.

[21] Y.Z. Huang and D.J. Blackwood: Electrochim. Acta. Vol. 51 (2005), P. 1099.

[22] A.K. Shukla, R. Balasubramaniam and S. Bhargava: Intermetallics Vol. 13 (2005), P. 631.

In order to see related information, you need to Login.