Characterization of Electrochemically Synthesized Pani on Graphite Electrode Use EIS


Article Preview

Polyaniline (Pani) on graphite electrode was synthesized electrochemically under galvanostatic condition at current density of 2.0 mA/cm2 from aqueous solution of 1.0 mol/L HCl and 0.25 mol/L aniline monomer. The Electrochemical Impedance Spectroscopy investigation of Pani was carried out at different stages of polymers oxidation. In the potential range 0.2V~0.7 V vs SCE, with the increase of test potential the membrane resistance decreased rapidly, and Faraday process at the polymer/solution interface weakened. When the test potential in range of -0.8V~0.2V or 0.7V~0.8V, the film has a higher membrane resistance, and lower ionic charge transfer resistance, which indicated that the ion exchange for the charge compensation at the polymer/electrolyte interface is much easier. And anticorrosion properties of Pani coating of different oxidations was investigated by salt spray test. The final visual observations of the tested coatings are in agree with the results of electrochemical impedance spectroscopy.



Advanced Materials Research (Volumes 295-297)

Edited by:

Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu






Q. Zhou et al., "Characterization of Electrochemically Synthesized Pani on Graphite Electrode Use EIS", Advanced Materials Research, Vols. 295-297, pp. 1124-1128, 2011

Online since:

July 2011




[1] Deberry D. W. J. Electrochem. Soc., 132 (1985), p.1022.

[2] Wessling B. Adv. Mater., 6 (1994), p.226.

[3] Kinlen P J, Menon V, Ding Y W. J. Electrochem. Soc., 146 (1999), p.3690.

[4] Gasparac R, Martin C R. J. Electrochem. Soc., 148 (2001), p. B138.

[5] Kinlen P J, Silverman D C, Jeffreys C R. Synth. Met., 85 (1997), p.1327.

[6] Deng Z., Smyrl W. H., White H. S., J. Electrochem. Soc., 136 (1989), p.2153.

[7] Jain F C, Rosato J J, Kalonia K S, et al., Corros. , 42 (1986), p.700.

[8] Wessling B. Mater. Corros., 47 (1996), p.439.

[9] Schauer T, Joos A, Dulog L, et al. Prog. Org. Coat., 33 (1998), p.20.

[10] Williams G., McMurray H. N., Electrochim. Acta., 54 (2009), p.4245.

[11] Nechtschein M., Devreux F., Genoud F. et al., Synth. Met., 15 (1986), p.59.

[12] Bernard M C., Hugot-LeGoff A., Joiret S., Synth. Met., 102 (1999), p.1383.

[13] Camalet J L., Lacroix J C., Aeiyach S, et a1., Synth. Met., 93 (1998), p.133.

[14] Gospodinova N., Terlemezyan L., Prog. Polym. Sci., 23 (1998), p.1443.

[15] Zhong L., Xiao S.H., Hu J., et al. Corros. Sci., 48 (2006), p.3960.

[16] W.A. Gazotti, T. Matencio, M. A. Depaoli, Electrochim. Acta 43 (1998), p.457.

[17] E.I. Santiago, E.C. Pereira, L.O.S. Bulhões, Synth. Met., 98 (1998), p.87.

[18] Andreas Neudeck , Andreas Petr, Lothar Dunsch, Synth. Met., 107 (1999), p.143.

[19] Ulgut, B. & Abrun˜a, H. c.D., Chem. Rev., 108 (2008), p.2721.

[20] Tarola, A.; Dini, D.; Salatelli, E.; Andreani, F.; Decker, F. Electrochim. Acta, 44(1999), p.4189.

DOI: 10.1016/s0013-4686(99)00133-4

[21] Grzeszczuk, M.; Poks, P., J. Electroanal. Chem., 387 (1995), p.79.

[22] S. Gottesfeld, in Proc. First Intl. Seminar on Double-Layer Capacitors and Similar energy Storage Devices, S.P. Wolsky and N. Marincic, eds. Florida Educaional Seminars, Boca Raton, Fla. (1991).

[23] E T Kang, K G Neoh, K L Tan. Prog. Polym. Sci., 23, (1998), p.27.

In order to see related information, you need to Login.