Ab Initio Calculation of (001) TiAl3/Al Interface


Article Preview

We employ density functional theory to investigate TiAl3/Al interfaces with the orientation of (001) [100]Al//(001)[100]TiAl3 by electronic structures, relaxed atomic geometries and adhesions. The preferable interfacial atomic structure is that wherein Al atoms continue on the natural stacking sequence of bulk TiAl3. Two types of TiAl3 (001) slabs, Ti-centered, all Al atoms, are adopted to compare interfacial energy, interfacial electronic structure. The calculated adhesion energies Wad of the two types of interface are very close, and are quantitatively in agreement with other calculated results of Al on the carbide and nitride, but much lower than the (111)Al[1 0]Al//(0001)TiB2[11 0]TiB2 adhesion energy. We have thoroughly characterized the electronic structure and determined that the metallic Al-3p and Ti-3d bonding constitute the primary interfacial bonding interaction.



Advanced Materials Research (Volumes 295-297)

Edited by:

Pengcheng Wang, Liqun Ai, Yungang Li, Xiaoming Sang and Jinglong Bu




L. Wang et al., "Ab Initio Calculation of (001) TiAl3/Al Interface", Advanced Materials Research, Vols. 295-297, pp. 1305-1310, 2011

Online since:

July 2011




[1] N. Poondla, T.S. Srivatsanb, A. Patnaika, M. Petrarolic, J. Alloys. Compd. 486 (2009), P. 162.

[2] I. Gurrappa, D. V. Reddy, J. Alloys. Compd. 390 (2005), P. 270.

[3] L. Y. Kong, J. Z. Qi, B. Lu, R. Yang, X. Cui, T. F. Li, T. Y. Xiong, Surf. Coat. Tech. 204 (2010) P. 2262.

[4] C. W. Hsu, C. G. Chao, Metall. Maters. Trans. B, 33 (2002), P. 31.

[5] X. G. Ma, X. F. Liu, H. M. Ding, J. Alloy Compd., 471 (2009), P. 56.

[6] N. Iqbal, N. H. Dijk, S. E. Offerman, N. Geerlofs, M. P. Moret, L. Katgerman, G. J. Kearley, Mater. Sci. Eng. A, 416 (2006), P. 18.

[7] Y. F. Han, K. Li, J. Wang, D. Shu, B. Sun, Mater. Sci. Eng.: A, 405 (2005), P. 306.

[8] H. L. Zhao, Y. Song, M. Li, S. K. Guan, J. Alloys Compd., 508 (2010), P. 206.

[9] L. M. Liu, S. Q. Wang, H. Q. Ye, J. Phys.: Condens. Matter, 15 (2003), P. 8103.

[10] L.M. Liu, S.Q. Wang, H.Q. Ye, Acta Mater., vol. 52 (2004), P. 3681.

[11] Y. F. Han, Y. B. Dai, D. Shu, J. Wang and B. D. Sun, J. Phys.: Condens. Matter, vol. 18 (2006), P. 4197.

[12] Y. F. Han, Y. B. Dai, D. Shu, J. Wang, B. D. Sun, Appl. Phys. Lett. Vol. 89 (2006), P. 144107.

[13] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, J Phys: Cond Matt, 14 (2002), P. 2717.

[14] T. H. Fischer and J. Almlof, J. Phys. Chem. 96, (1992), P. 9768.

[15] D. J. Siegel, L. G. Hector, Jr., and J. B. Adams, Surf. Sci. 489, (2002) P. 321.

[16] D. J. Siegel, L. G. Hector, Jr., and J. B. Adams, Phys. Rev. B 67, (2003), P. 092105.

[17] O. Kubaschewski, W. A. Dench, Acta Metall., 3(1955), P. 339.

[18] E. A. Brandes, Smithells, Metals Reference Book, (Butterworth publications, London 1983).