Efficient Terahertz Surface-Emitted Difference Frequency Generation in Periodically-Inverted GaAs Crystals

Abstract:

Article Preview

We explore the terahertz (THz) wave generation based on surface-emitted difference frequency generation (SEDFG) in periodically-inverted GaAs crystals. One scheme applying collinear quasi phase matching (QPM) is proposed. The wave propagation of the higher frequency pump wave is parallel to the wave propagation of the lower frequency pump wave, and both of them are perpendicular to the domain wall of the nonlinear crystal. The THz wave is emitted perpendicular to the surface of the nonlinear crystal. We calculated the grating period of periodically-inverted GaAs at the range of 100-1000μm (0.3-3THz). Our estimates illustrate that THz wave output corresponds to the power conversion efficiency of 0.015% at a frequency of 1THz. The result is shown that this scheme is efficient to obtain THz wave.

Info:

Periodical:

Advanced Materials Research (Volumes 301-303)

Edited by:

Riza Esa and Yanwen Wu

Pages:

334-337

DOI:

10.4028/www.scientific.net/AMR.301-303.334

Citation:

Z. M. Rao et al., "Efficient Terahertz Surface-Emitted Difference Frequency Generation in Periodically-Inverted GaAs Crystals", Advanced Materials Research, Vols. 301-303, pp. 334-337, 2011

Online since:

July 2011

Export:

Price:

$35.00

[1] Y.M. Bahk, H.R. Park, K.J. Ahn, H.S. Kim, Y.H. Ahn, D.S. Kim, J. Bravo-Abad, L. Martin-Moreno, and F.J. Garcia-Vidal: Phys. Rev. Lett. Vol. 106 (2011), 013902.

DOI: 10.1103/physrevlett.106.013902

[2] C.A. Schmuttenmaer: Chem. Rev. Vol. 104(2004), pp.1759-1779.

[3] X. Xie, J. Dai, Zhang. X. C: Phys. Rev. Lett. Vol. 96 (2006), 075505.

[4] M. B. Johnson, D.M. Whittaker, A. Corchia, A.G. Davies, and E.H. Linfield: Phys. Rev. B. Vol. 65(2002), 165301.

[5] D. Molter, M . Theuer, and R . Beigang: Opt. Express. Vol. 17(2009), pp.6623-6628.

[6] Y.S. Lee, T. Meade, V. Perlin, H. Winful, T.B. Norris, and A. Galvanauskas: Appl. Phys. Lett. Vol. 76(2000), pp.2505-2507.

[7] K.L. Vodopyanov, M.M. Fejer, X. Yu, J.S. Harris, Y.S. Lee, W. C . Hurlbut, V.G. Kozlov, D. Bliss, and C. Lynch: Appl. Phys. Lett. Vol. 89(2006), 141119.

DOI: 10.1063/1.2357551

[8] Y. Avetisyan, Y. Sasaki, and H. Ito: Appl. Phys. B Vol. 73(2001), p.511.

[9] C. Weiss, G. Torosyan, Y. H. Avetisyan, and R. Beigang: Opt. Lett. Vol. 26(2001) , p.563.

[10] K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan: Opt. Lett. Vol. 31(2006), p.957.

[11] D. N. Nikogosyan: Nonlinear Optical Crystals: A Complete Survey (New York: Springer) 2005, p.208.

[12] T. Skauli, P.S. Kuo, K.L. Vodopyanov, T.J. Pinguet, O. Levi, L.A. Eyres, J.S. Harris, B. Gerard, L. Becouarn, and E. Lallier: J. Appl. Phys. Vol. 94(2003), p.6447.

DOI: 10.1063/1.1621740

[13] V. G. Dmitriev: Handbook of Nonlinear Optical Crystals (Springer publications, Berlin 1999) p.50.

In order to see related information, you need to Login.