First-Principles Study of Nb Doping Effect on the Diffusion of Oxygen Atom in γ-TiAl

Abstract:

Article Preview

The effect of Nb doping on the diffusion of oxygen in γ-TiAl is studied by the use of first-principles. Our calculated results showed that the diffusion barriers of oxygen in γ-TiAl are increased by the Nb doping. And the effect of Nb doping dies down as the distance between the oxygen atom and doped Nb atom increases. Accordingly, the improvement of the poor oxidation resistance of γ-TiAl by Nb doping may be caused by suppressing the diffusion of oxygen atom in γ-TiAl.

Info:

Periodical:

Edited by:

Jerry Tian

Pages:

148-153

DOI:

10.4028/www.scientific.net/AMR.304.148

Citation:

C. Y. Zhao et al., "First-Principles Study of Nb Doping Effect on the Diffusion of Oxygen Atom in γ-TiAl", Advanced Materials Research, Vol. 304, pp. 148-153, 2011

Online since:

July 2011

Export:

Price:

$38.00

[1] Y.W. Kim and J. Miner: Met. Mater. Soc. Vol. 46 (1994) P. 30.

[2] M. Yamaguchi and Y. Umakoshi: Prog. Mater. Sci. Vol. 34 (1990) P. 1.

[3] M. Yamaguchi, H. Inui and K. Ito: Prog. Mater. Sci. Vol. 48 (2000) P. 307.

[4] E.A. Loria: Intermetallics Vol. 9 (2001) P. 997.

[5] M. Schmiedgen, P.C.J. Graat, B. Baretzky and E.J. Mittemeijer: Thin Solid Films Vol. 114 (2002), p.415.

DOI: 10.1016/s0040-6090(02)00551-5

[6] S. Taniguchi, T. Shibata and S. Itoh: Mater. Trans. JIM. Vol. 32 (1991), p.151.

[7] X.Y. Li, S. Taniguchi, Y.C. Zhu, K. Fujita, N. Iwanmto and Y. Mastsunaga: Phys. Rev. B Vol. 187 (2002), p.207.

[8] L. Hong, S.Q. Shao and H.Q. Ye: J. Mater. Sci. Technol. Vol. 4 (2009), p.569.

[9] S. Taniguchi, H. Juso and T. Shibata: Oxid. Mat. Vol. 49 (1998), p.325.

[10] N. Toshio, I. Takeshi, Y. Mamoru and Y. Takayuki: Intermetallics Vol. 8 (2000), p.371.

[11] S. Taniguchi, Y.C. Zhu, F. Kazuhisa and I. Nobuya: Oxidation of Metals Vol. 58 (2002).

[12] J.P. Lin, L.L. Zhao, G.Y. Li, L.Q. Zhang, X.P. Song, F. Ye and G.L. Chen: Intermetallics Vol. 1 (2010), p.6.

[13] M. Yoshihara and K. Miura: Intermetallics Vol. 3 (1995), p.357.

[14] T.K. Roy, R. Balasubramaniam and A. Ghosh: Metall Mater Trans. A Vol. 27A (1996), p.3993.

[15] C.Y. Zhao, X. Wang, F.H. Wang, J.X. Shang, and Y.S. Zhou: submitted to Journal of Physics: Condensed Matter (2011).

[16] G. Kresse and J. Furthmuller: Phys. Rev. B Vol. 54 (1976), p.11169.

[17] P.E. Blochl: Phys. Rev. B Vol. 50 (1994), p.17953.

[18] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhains: Phys. Rev. B Vol. 46 (1992), p.6671.

[19] E.A. Brandes: Smithell Metals Reference Book 6 edn (1983).

[20] S.Y. Liu, J.X. Shang, F.H. Wang and Y. Zhang: Phys. Rev. B Vol. 79 (2009), p.075419.

[21] G. Henkelman, B.P. Uberuaga and H. Jonsson: J. Chem. Phys. Vol. 113 (2000), p.9901.

In order to see related information, you need to Login.