Monte Carlo Simulation and Applications in Design and Manufacture of Nanostructures

Abstract:

Article Preview

This paper provides a review of Monte Carlo (MC) method and its applications in mechanical engineering. MC simulation is a class of computational algorithms which require repeated random sampling and statistical analysis to calculate the results. The basic principles, formulas and recent development of Monte Carlo method are firstly discussed briefly, and then the applications of MC simulations in the design and manufacturing of nanostructures are reviewed. Finally, we briefly introduce MC simulation of morphology evolution of machined surface, which come from our recent work.

Info:

Periodical:

Edited by:

Guanglin Wang, Huifeng Wang, Jun Liu and Xilin Zhu

Pages:

154-158

DOI:

10.4028/www.scientific.net/AMR.305.154

Citation:

X. L. Hu et al., "Monte Carlo Simulation and Applications in Design and Manufacture of Nanostructures", Advanced Materials Research, Vol. 305, pp. 154-158, 2011

Online since:

July 2011

Export:

Price:

$38.00

[1] N. Metropolis, S. Ulam, The Monte Carlo method, J. Am. Stat. Ass., 44(1949) 335-341.

[2] N. Metropolis, The begining of the Monte Carlo method, Los Alamos Sci., 15(1987) 125-130.

[3] N. Metropolis, A. W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21(1953) 1087-1092.

DOI: 10.2172/4390578

[4] D. Raabe, Computational Materials Science: The Simulation of Materials, Microstructures and properties. Wiley-VCH, Germany (1998).

[5] R. Komanduri, L. M. Raff, A. Chandrasekaran, A combined Monte Carlo-damped trajectory simulation of nanometric testing of fcc metals under uniaxial tention, Philos. Mag. Lett., 82(2002) 247-256.

DOI: 10.1080/09500830210127039

[6] R. Komanduri, Z. B. Hou, Thermal modeling of the metal cutting process Part I-Temperature rise distribution due to shear plane heat source, Int. J. Mech. Sci., 42 (2000) 1715-1752.

[7] R. Komanduri, R. Narulkar, L. M. Raff, Monte Carlo simulation of nanometric cutting, Philos. Mag., 84(2004) 1155-1183.

DOI: 10.1080/14786430310001646736

[8] R. Narulkar, L. M. Raff, R. Komanduri, Monte Carlo-steepest descent (MC-SD) simulations of nanometric cutting, Proc. IMECHE Part N: J. Nanoengineering and nanosystem, 218(2005) 7-16.

DOI: 10.1243/174034905x35351

In order to see related information, you need to Login.