Preparation and Characterization of Mg(OH)2 Flame-Retardant with Particular Morphology via Hydrothermal Process

Abstract:

Article Preview

The process of preparing magnesium hydroxide flame retardants with particular morphologies after hydrothermal treatment in the presence of organic modifier ethanediamine was mainly investigated. Influences of such factors as slurry concentration, modifier solution concentration and reaction temperature were studied. Meanwhile, the hydrothermally treated results were characterized by XRD, SEM, FTIR and TGA. The results indicate that when the reaction temperature was 180°C, and the reaction time ranges from 4 to 8 hours, the magnesium hydroxide and organic modifier solution concentration separately was 5% and 4 mol/L, a spherical crystalline magnesium hydroxide that has a symmetrical and regular crystal morphology was prepared. Such magnesium hydroxide materials were found to give an enhanced powder filtration.

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Edited by:

Shiquan Liu and Min Zuo

Pages:

1311-1316

Citation:

L. M. Ji et al., "Preparation and Characterization of Mg(OH)2 Flame-Retardant with Particular Morphology via Hydrothermal Process", Advanced Materials Research, Vols. 306-307, pp. 1311-1316, 2011

Online since:

August 2011

Export:

Price:

$38.00

[1] P.R. Hornsby, J. Wang, R. Rothon, G. Jackson, G. Wilkinson, Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler, Polym. Degrad. Stab. 51(1996) 235-249.

DOI: https://doi.org/10.1016/0141-3910(95)00181-6

[2] P.R. Hornsby, C.L. Watson, Mechanism of smoke suppression and fire retardancy in polymers containing magnesium hydroxide filler. Plast Rubber Process. 11(1989) 45-51.

[3] G. Pal, H. Macskay (Eds. ), Plastics Their Behavior in Fires, Elsevier, Amsterdam, (1991).

[4] M. Sain, S.H. Park, F. Suhara, S. Law, Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide, Polym. Degrad. Stab. 83 (2004) 363-367.

DOI: https://doi.org/10.1016/s0141-3910(03)00280-5

[5] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, Y. Qian, Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis, Chem. Mater. 13 (2001) 435-440.

DOI: https://doi.org/10.1021/cm000607e

[6] Rothon R N, Horsby P R, Flame retardant effects of magnesium hydroxide, Polymer Degradation and Stability. 54 (1996) 383-385.

DOI: https://doi.org/10.1016/s0141-3910(96)00067-5

[7] Ondrej Grexa, Elena H, Olga B, Peter L, Flame retardant treated plywood, Polymer Degradation and Stability. 64 (1999) 529-533.

DOI: https://doi.org/10.1016/s0141-3910(98)00152-9

[8] XIANG Lan, JIN Yong-cheng, JIN Yong, Hydrothermal formation of dispersive Mg(OH)2 particles in NaOH solution, Trans. Nonferrous Met. Soc. 14 (2004) 370-375.

DOI: https://doi.org/10.1142/9789812705228_0039

[9] V. A. Phillips, J. L. Kolbe, H. Opperhauser, Effect of pH on the growth of Mg(OH)2 crystals in an aqueous environment at 60°C, Journal of Crystal Growth. 41 (1977) 228-234.

DOI: https://doi.org/10.1016/0022-0248(77)90050-1

[10] Henrist C, Mathieu J P, Vogels C, Rulmont A, Cloots R, Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, Journal of Crystal Growth. 249 (2003) 321-330.

DOI: https://doi.org/10.1016/s0022-0248(02)02068-7

[11] Nisiue W, Komatsu M, Jp Patent 57, 100, 918. (l982).

[12] W. Fan, S. Sun, X. Song, W. Zhang, H. Yu, X. Tan, G. Cao, Controlled synthesis of single-crystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process, J. Solid State Chem. 177 (2004) 2329-2338.

DOI: https://doi.org/10.1016/j.jssc.2004.03.028

[13] H.Q. Wu, M.W. Shao, J.S. Gu, X.W. Wei, Microwave-assisted synthesis of fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature, Mater. Lett. 58 (2004) 2166–2169.

DOI: https://doi.org/10.1016/j.matlet.2004.01.010

[14] J. Yu, A. Xu, L. Zhang, R. Song, L. Wu, Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates, J. Phys. Chem. B. 108 (2004) 64-70.

[15] Y. Li, M. Sui, Y. Ding, G. Zhang, J. Zhuang, C. Wang, Preparation of Mg(OH)2 Nanorods, Adv. Mater. 12 (2000) 818.

DOI: https://doi.org/10.1002/(sici)1521-4095(200006)12:11<818::aid-adma818>3.0.co;2-l

[16] L. Yan, J. Zhuang, X. Sun, Z. Deng, Y. Li, Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration, Mater. Chem. Phys. 76 (2002) 119-122.

DOI: https://doi.org/10.1016/s0254-0584(01)00509-0

[17] Ph. Baranek, A. Lichanot, R. Orlando, R. Dovesi, Structural and vibrational properties of solid Mg(OH)2 and Ca(OH)2 - performances of various hamiltonians, Chem. Phys. Lett. 340 (2001) 362-369.

DOI: https://doi.org/10.1016/s0009-2614(01)00381-5

[18] R. Ma, Y. Bando, Uniform MgO nanobelts formed from in situ Mg3N2 precursor, Chem. Phys. Lett. 370 (2003) 770-773.

DOI: https://doi.org/10.1016/s0009-2614(03)00222-7

[19] C. Tang, Y. Bando, T. Sato, Oxide-assisted catalytic growth of MgO nanowires with uniform diameter distribution, J. Phys. Chem. B. 106 (2002) 7449-7452.

DOI: https://doi.org/10.1021/jp0207883

[20] P. Jeevanandam, K. Klabunde, Redispersion and reactivity studies on surfactant-coated magnesium oxide nanoparticles, Langmuir 19 (2003) 5491-5495.

DOI: https://doi.org/10.1021/la020929s

[21] G. Kordas, Sol-gel preparation of mgo fibers, J. Mater. Chem. 10 (2000) 1157-1160.

DOI: https://doi.org/10.1039/b001015o

[22] B. Xu, J. Wei, H. Wang, K. Sun, Q. Zhu, Nano-mgo: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane, Catal. Today. 68 (2001) 217-225.

DOI: https://doi.org/10.1016/s0920-5861(01)00303-0

[23] J. Zhan, Y. Bando, J. Hu, D. Golberg, Bulk synthesis of single-crystalline magnesium oxide nanotubes, Inorg. Chem. 43 (2004), 2462-2464.

DOI: https://doi.org/10.1021/ic0351489

[24] M. Turek, W. Gnot, Precipitation of magnesium hydroxide from brine, Ind. Eng. Chem. Res. 34 (1995) 244-250.

DOI: https://doi.org/10.1021/ie00040a025

[25] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures, Wiley/Interscience, New York, (1974).

[26] G.R. Pachler, F. Matlok, H.U. Gremlich, Merck FT-IR Atlas: A Collection of FT-IR Spectra, Weinheim, New York, (1988).

DOI: https://doi.org/10.1002/nadc.19890370319

[27] E.F. Oloveira, Y. Hase, Infrared study and isotopic effect of magnesium hydroxide, Vib. Spectrosc. 25 (2001) 53–56.

[28] J. A. Wang, O. Novaro, X. Bokhimi, T. L´ opez, R. G´ omez, J. Navarrete, M. E. Llanos, E. L´ opez-Salinas, Characterizations of the thermal decomposition of brucite prepared by sol–gel technique for synthesis of nanocrystalline MgO, Mater. Lett. 35 (1998).

DOI: https://doi.org/10.1016/s0167-577x(97)00273-5

Fetching data from Crossref.
This may take some time to load.