Electrodeposition of Au/Brush-Zn Heterojunction Nanowires


Article Preview

Au/brush-Zn heterojunction nanowires were synthesized by using the Anodic Alumina Membrane (AAM) template combine with DC electrodeposition. As-prepared Au/brush-Zn nanowires were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive x-ray spectrometer (EDS). Secondary growth mechanism is proposed for the formation of Zn brush structure. The Au/brush-Zn nanowires exhibit a strong absorption in a broad range of wavelength especially between 200 and 360nm, which may be ascribed to the transition of the electrons from the d band to the s, p conduction band near the Fermi surface and the transition from valence bands to conduction bands for Zn brush associated with enhancement of Au.



Advanced Materials Research (Volumes 306-307)

Edited by:

Shiquan Liu and Min Zuo




X. Zhao et al., "Electrodeposition of Au/Brush-Zn Heterojunction Nanowires", Advanced Materials Research, Vols. 306-307, pp. 1406-1411, 2011

Online since:

August 2011




[1] E. Deiss, F. Holzer, O. Haas, Modeling of an electrically rechargeable alkaline Zn-air battery, Electrochim. Acta 47 (2002) 3995-4010.

DOI: https://doi.org/10.1016/s0013-4686(02)00316-x

[2] J.G. Wang, M.L. Tian, N. Kumar, T.E. Mallouk, Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition, Nano Lett. 5 (2005) 1247-1253.

DOI: https://doi.org/10.1021/nl050918u

[3] J.P. Heremans, C.M. Thrush, D.T. Morelli, M.C. Wu, Resistance, magnetoresistance and thermopower of zinc nanowire composites, Phys. Rev. Lett. 91 (2003) 076804.

DOI: https://doi.org/10.1103/physrevlett.91.076804

[4] Y.X. Du, F.G. Zeng, Aging effects on the optical properties of an individual Zn-rich ZnO nanowire, J. Alloys Compd. 509 (2011) 1275-1278.

DOI: https://doi.org/10.1016/j.jallcom.2010.10.008

[5] S.L. Cho, J. Ma, Y.K. Kim, Y. Sun, G.K. Wong, J.B. Ketterson, Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn, Appl. Phys. Lett. 75 (1999) 2761-2763.

DOI: https://doi.org/10.1063/1.125141

[6] Y.C. Zhu, Y. Bando, Y. Uemura, ZnS-Zn nanocables and ZnS nanotubes, Chem. Commun. 7 (2003) 836-837.

DOI: https://doi.org/10.1039/b300249g

[7] A.J. Nelson, A.M. Conway, C.E. Reinhardt, J.L. Ferreira, R.J. Nikolic, S.A. Payne, X-ray photoemission analysis of passivated Cd(1-x)ZnxTe surfaces for improved radiation detectors, Mater. Lett. 63 (2009) 180-181.

DOI: https://doi.org/10.1016/j.matlet.2008.09.051

[8] J.Y. Li, L.S. Wang, D.B. Buchholz, R.P.H. Chang, Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires, Nano Lett. 9 (2009) 1764-1769.

DOI: https://doi.org/10.1021/nl8035228

[9] Y.F. Yan, P. Liu, M.J. Romero, M.M. Al-Jassim, Formation of metallic zinc nanowires, J. Appl. Phys. 93 (2003) 4807-4809.

DOI: https://doi.org/10.1063/1.1560854

[10] X.S. Peng, L.D. Zhang, G.W. Meng, X.Y. Yuan, Y. Lin, Y.T. Tian, Synthesis of Zn nanofibres through simple thermal vapour-phase deposition, J. Phys. D: Appl. Phys. 36 (2003) L35-L38.

DOI: https://doi.org/10.1088/0022-3727/36/6/101

[11] J.F. Gong, S.G. Yang, H.B. Huang, X.N. Zhao, Z.Z. Yu, Zinc nanoplates synthesized by a micro-jet under electron-beam irradiation, Nanotechnology 18 (2007) 235606.

DOI: https://doi.org/10.1088/0957-4484/18/23/235606

[12] J. Araujo, R.V. Ferreira, M.I. Yoshida, V.M.D. Pasa, Zinc nanowires synthesized on a large scale by a simple carbothermal process, Solid. State. Sci. 11 (2009) 1673-1679.

DOI: https://doi.org/10.1016/j.solidstatesciences.2009.05.034

[13] Y.W. Wang, L.D. Zhang, G.W. Meng, C.H. Liang, G.Z. Wang, S.H. Sun, Zn nanobelts: a new quasi one-dimensional metal nanostructure, Chem. Commun. 24 (2001) 2632-2633.

DOI: https://doi.org/10.1039/b108158f

[14] J.Y. Li, X.L. Chen, Large-scale and catalyst-free synthesis of zinc nanotubes and nanowires, Solid State Commun. 131 (2004) 769-772.

DOI: https://doi.org/10.1016/j.ssc.2004.07.001

[15] W.S. Khan, C.B. Cao, J.Y. Zhong, Y.Y. Liu, M.A. Iqbal, Synthesis of metallic Zn microprisms, their growth mechanism and PL properties, Mater. Lett. 64 (2010) 2273-2276.

DOI: https://doi.org/10.1016/j.matlet.2010.07.034

[16] C. Schonenberger, B.M.I. VanderZande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, Staufer, Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology, J. Phys. Chem. B 101 (1997).

DOI: https://doi.org/10.1021/jp963938g

[17] G. Yu, E.H. Yue, Y.J. OuYang, W.W. Si, B.Y. Hu, L.Y. Ye, Fabrication of Pd-alloy nanowire arrays by galvanostatic deposition in porous anodic aluminum oxide template, J. Hunan. Univ. (Natural Sciences) 9 (2007) 67-70.

[18] C.L. Cheng, J.S. Lin, Y.F. Chen, Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays, Mater. Lett. 62 (2008) 1666-1669.

DOI: https://doi.org/10.1016/j.matlet.2007.09.065

[19] Q. Deng, X.Y. Li, T.J. Cai, Z.S. Peng, Study of acetone elimination on supported Au/r-Al2O3 catalysts, J. Hunan. Univ. Sci. Tech. (Natural Science Edition) 22 (2007) 90-93.

[20] S. Kar, S. Santra, ZnO nanotube arrays and nanotube-based paint-brush structures: A simple methodology of fabricating hierarchical nanostructures with self-assembled junctions and branches, J. Phys. Chem. C 112 (2008) 8144-8146.

DOI: https://doi.org/10.1021/jp802893t

[21] Y.Q. Bie, Z.M. Liao, H.J. Xu, X.Z. Zhang, X.D. Shan, D.P. Yu, Controllable synthesis and characterization of tube brush-like ZnO nanowires produced via a simple chemical vapor deposition method, Appl. Phys. a-Mater. 98 (2010) 491-497.

DOI: https://doi.org/10.1007/s00339-009-5478-6

[22] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, (1988).

[23] Y. Tian, H.Q. Liu, G.H. Zhao, T. Tatsuma, Shape-controlled electrodeposition of gold nanostructures, J. Phys. Chem. B 110 (2006) 23478-23481.

DOI: https://doi.org/10.1021/jp065292q