The Synthesis and Crystallography of Some Novel ZnO Nano- and Micro-Crystals and Structures


Article Preview



Edited by:





Z. M. Li et al., "The Synthesis and Crystallography of Some Novel ZnO Nano- and Micro-Crystals and Structures", Advanced Materials Research, Vol. 31, pp. 141-149, 2008

Online since:

November 2007




[1] Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H. weber, E.; Russo, R.; Yang, P. Science, 2001, 292, 1897.

[2] Yan, H. Q; He, R. R; Pham, J.; Yang, P. D. Adv. Mater. 2003, 15, 402.

[3] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science, 2001, 291, (1947).

[4] Lao, J.; Wen, J.; Ren, Z. Nano letter. 2002, 2, 1287.

[5] Tian, Z.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821.

[6] Kong, X.; Ding, Y. Yang, R.; Wang, Z. L. Science, 2004, 303, 1348.

[7] Hughes, W. L.; Wang, Z. L. J. Am. Chem. Soc. 2004, 126, 6703.

[8] Xing, Y. J.; Xi, Z. H.; Xue, Z. Q.; Zhang, X. D.; Song, J. H.; Wang, R. M.; Xu, J.; Song, Y.; Zhang, S. L.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 1689.

[9] Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Adv. Mater. 2001, 13, 113.

[10] Wang, G. Z.; Ma, N. G.; Deng, C.J.; Yu, P.; To, C.; Y. Hung, N. C.; Aravind, M.; Ng, Dickon H. L. Mater. Lett. 2004, 58, 2195.

[11] Gu, G.; Burghard, M.; Kim, G. T.; Düsberg, G. S.; Chiu, P. W.; Krstic, V.; Roth, S.; Han, W. Q. J. Appl. Phys., 2001, 90, 5747.

[12] Nguyen, P.; Ng, H. T.; Meyyappan, M. Adv. Mater. 2005, 17, 1777.

[13] (a) Penn, R. L.; Banfield, J. F. Science, 1998, 281, 969. (b) Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Science, 2000, 289, 751.

[14] Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Ed. 2002, 41, 1188.

[15] Wang, Z. L. Nanowire and Nanobelets-Materials, Properties, and Devices; Tinghua University Press: Beijing, 2004, Vol I.

[16] Huang, M. H.; Wu, Y.; Fieck, H.; Tran, N.; Weber, E.; Yang, P. D. ADV. Mater. 2001, 13, 113.

[17] Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science, 2004, 303, 1348.

[18] Kong, X. Y.; Wang, Z. L. Nano. Lett. 2003, 3, 1625.

[19] Huang, L. S.; Wright, S.; Yang, S. G.; Shen, D. Z.; Gu, B. X.; Du, Y. W. J. Phys. Chem. B. 2004, 108, 19901.

[20] Levitt, A. P.; Ed.; Whisker Technlology; Wiley-interscience: New York, (1970).

[21] Wang, Z. L. Annu. Rev. Phys. Chem. 2004, 55, 159.

[22] Hao, Y. F.; Meng, G. W.; Ye, C. H.; Zhang, X. R.; Zhang, L. D. J. Phys. Chem. B. 2004, 109, 11204. Figure 1. SEM images of oriented ZnO microstructures. a) A low-magnification image showing the uniformity of the microstructure, b) High-magnification of the columns of ZnO, c) A cross-shaped ZnO column composed of small hexagonal microrods and polyhedrons (c) (d) (a) (b) 350 400 450 500 550 600 650 PL Intensity (a. u. ) Wavelength (nm) nanorings on prism intergrowth ZnO Figure 2. XRD pattern of the 3D structure formed by the intergrowth ZnO cryatallites. Figure 3. Room temperature PL spectra of ZnO products. Figure 4. FESEM images of nanorings on nanoprisms. Figure 5. FESEM images of the microtower-like ZnO. (a) (b) (c) (d) (d) (b) (c) (a).