Surface Optical Waves in Semi-Infinite One-Dimensional Photonic Crystals Containing Alternating Layers of Positive and Negative Media

Abstract:

Article Preview

An analytical direct matching procedure within the Kronig-Penney model applied to analyze the dispersion behavior of the localized surface states supported in the surface of a semiinfinite one-dimensional photonic crystals truncated with air. The photonic crystal containing alternating layers of positive and negative media. In the case of the conventional indices, as the incident light changes from normal to oblique incidence, the surface modes shifts into higher frequencies. For this reason, the phenomenon of photonic band gap has been used only under a narrow range of frequencies of light incident at a particular angle or in a particular angular range. We have showed that by choosing some proper value for the PC parameters, zero and negative dispersion of surface modes emerge in a large range of k|| , and, due to the different nature of the band structure the surface modes are more localized compared to those appeared in the conventional PC.

Info:

Periodical:

Edited by:

S. J. CHUA, J. H. TENG, O. WADA, R. DE LA RUE and X. H. TANG

Pages:

7-10

DOI:

10.4028/www.scientific.net/AMR.31.7

Citation:

A. Soltani Vala et al., "Surface Optical Waves in Semi-Infinite One-Dimensional Photonic Crystals Containing Alternating Layers of Positive and Negative Media", Advanced Materials Research, Vol. 31, pp. 7-10, 2008

Online since:

November 2007

Export:

Price:

$35.00

[1] Moreno E, Martin Moreno L and Garcia-Vidal F J, Phys. Rev. B 69 121402R (2004).

[2] Moreno E, Martin Moreno L and Garcia-Vidal F J, Phot. And Nanostr. 2 97 (2004).

[3] Kramper P, Agio M, Soukoulis C M, Bimer A, Muller F, Wehrspohn, Gosele U and Sandoghdar V, Phys. Rev. Lett. 92 113903(2003).

[4] Rahachou A I and Zozoulenko, Wave guiding properties of surface states in photonic crystals, arxiv: physics/0510273.

[5] Meade R D, Brommer K D, Rappe A M and Joannopoulos J D, Phys. Rev. B 44 10961 (1991).

[6] Robertson W M and May M S, Appl. Phys. Lett. 74 1800 (1999).

[7] Ramos-Mendieta F and Halvei P, Phys. Rev. B 59 15112 (1999).

[8] Qiu M and He S, Phys. Lett. A 282 85 (2001).

[9] Lin L L and Li Z Y, Phys. Rev. B 63 033310 (2001).

[10] Solgaard O, Ho F, Thackara J I and Bloom D M, Appl. Phys. Lett. 61 2500 (1992).

[11] Bria D, Djafari-Rouhani B, Akjouj A, Dobrzynski L, Vigneron J P, El Boudouti E H and Nougaui A, Phys. Rev. E 69 066613 (2004).

[12] Liang G, Han P and Wang H, Opt. Lett. 29 192 (2004).

[13] Steslicka M, Kucharczyk R, Akjouj A, Djafari-Rouhani B, Dobrzynski L and Davison S G S. S. Reports 47 93 (2002).

DOI: 10.1016/s0167-5729(02)00052-3

[14] M. Kalafi, A. Soltani-Vala, J. Barvestani, Optics Communications, 272, 403 (2007).

[15] Steslicka M, Kucharczyk R and Glasser M L Phys. Rev. B 42 1458 (1990).

[16] Steslicka M, Kucharczyk R, Dobrzynski L, Djafari-Rouhani B, El Boudouti E H and Jaskolski W, Prog. Surf. Sci 46 219 (1994).

DOI: 10.1023/a:1021259106608

[17] Sang H Y, Li Z Y, Gu B Y, Physics Letters A. 331 414 (2004).

In order to see related information, you need to Login.