Electrochemical Synthesis and Characterization of NiFe/Au Multisegmented Nanowires


Article Preview

This paper represents the synthesis and characterization of NiFe single segment and NiFe/Au multisegmented nanowires. We fabricated these nanowires by electrodeposition technique using track etched polycarbonate membrane as a template with a nominal pore diameter of 50 nm. In recent years, much attention has been drawn to magnetic and nonmagnetic multisegmented nanowires because the magnetic properties of the nanowires can be useful for the manipulation and detection of biomolecules in a suspension by the application of relatively small magnetic fields where as the nonmagnetic segment has biocompatibility with high surface functionality. So in this work we studied the growth of NiFe/Au multisegmented nanowires. The length of the nanowires is found to be very uniform. The magnetic properties are measured by VSM. The measured coercivity and saturation magnetization of NiFe/Au multisegmented nanowires are lower than the NiFe nanowires. The structural morphology was observed by SEM. The EDS result shows the purity of both NiFe nanowires and NiFe/Au multisegmented nanowires.



Advanced Materials Research (Volumes 311-313)

Edited by:

Zhongning Guo




T. Sri Ramulu et al., "Electrochemical Synthesis and Characterization of NiFe/Au Multisegmented Nanowires", Advanced Materials Research, Vols. 311-313, pp. 370-376, 2011

Online since:

August 2011




[1] Y. Nakamura, J. Magn. Magn. Mater. 200 (1999) 634.

[2] Y. Rheem, C. M. Hangarter, E. H. Yang, D.Y. Park , N. V. Myung, and B. Yoo, IEEE Transactions on Nanotechnology 7 (2008) 251.

[3] D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, C. Zhou, Nano Lett. 4 (2004) 2151.

[4] S. Andreescu and O. A. Sadik, Pure Appl. Chem., 76 (2004) 861.

[5] K. B. Lee, S. Park and C. A. Mirkin, Angew. Chem. Int. Ed. 43 (2004) 3048.

[6] Ken Cham-Fai Leung and Yi-Xiang J. Wang, Source: Nanowires Science and Technology, Book edited by: Nicoleta Lupu, ISBN 978-953-7619-89-3, p.402, February 2010, INTECH, Croatia, downloaded from SCIYO. COM.

[7] H. Zeng, M. Zheng, R. Skomski, and D. J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, Jr. of appl. Phy. 87 (2000) 4717.

[8] X. Huang, L. Li, X. Luo, X. Zhu, and G. Li, J. Phys. Chem. 112 ( 2008) 1468.

[9] S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, M. J. Natan, Science 294 (2001) 136.

[10] A. K. Salem, P. C. Searson and K. W. Leong, Natr. Mater. 2 (2003) 668.

[11] R. L. Stoermer, K. B. Cederquist, S. K. McFarland, M. Y. Sha, S. G. Penn, and C. D. Keating, J. AM. Chem. Soc. 128 (2006) 16892.

[12] L. A. Bauer, D. H. Reich and G. J. M. Langmuir 19 (2003) 7043.

[13] H.J. Yang, F.W. Yuan and H.Y. Tuan, Chem. Commun. 46 (2010) 6105.

[14] Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, J. Appl. Phy. 108, 2010) 044301.

[15] J. H. Lee, J. H. Wu, H. L. Liu, J. U. Cho, M. K. Cho, B. H. An, J. H. Min, S. J. Noh, and Y. K. Kim, Angew. Chem. Int. Ed. 46 (2007) 3663.

[16] F. E. Atalay , H. n Kaya, S. Atalay , S. Tari, Jr. of Alloys and Compounds 469 (2009) 458.

[17] K.Y. Kok , C. M. Hangarter, B. Goldsmith , I. K. Ng , N. B. Saidin , N.V. Myung, Jr of Magn. and Mag. Mater. 322 (2010) 3876.

[18] J. R. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Lett., 5 ( 2005) 2179.

[19] M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, , Nano Lett., 1, (2001) 155.

[20] C. Scho1nenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kru1ger, A. Bachtold, R. Huber, H. Birk, and U. Staufer, J. Phys. Chem. B 101( 1997) 5497.

DOI: https://doi.org/10.1021/jp963938g

[21] A. Aharoni, S. Shtriman, Phys. Rev. 109 (1958) 1522.