A GPU Accelerated Red-Black SOR Algorithm for Computational Fluid Dynamics Problems

Abstract:

Article Preview

GPUs are high performance co-processors of CPU for scientific computing including CFD. We present an optimistic shared memory allocation strategy to solve 2D CFD problems using Red-Black SOR method on GPU with CUDA (Compute Unified Device Architecture). Lid-driven results are compared with the benchmark data. The speed up ratio of same problem size by using NVDIA GTX480 and Intel Core-Dual 3.0GHz processor is discussed, the performance of GPU is 120 times faster than the sequential code on CPU with the problem size of 756756. Based on this work, we conclude that using the memory hierarchy properly has a key role in improving the computational performance of GPU.

Info:

Periodical:

Edited by:

Jun Hu and Qi Luo

Pages:

335-340

DOI:

10.4028/www.scientific.net/AMR.320.335

Citation:

J. T. Liu et al., "A GPU Accelerated Red-Black SOR Algorithm for Computational Fluid Dynamics Problems", Advanced Materials Research, Vol. 320, pp. 335-340, 2011

Online since:

August 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.