Analyses of under Pressure Polyacetylene Conductivity


Article Preview

Electrical measurements under increasing hydrostatic pressure (1–4000 [bar]) have shown that electrical conductivity is closely related to the iodine doping rate (0–14%) of polyacetylene (PA) films. In pristine PA, conductivity increases with pressure while in 14% iodinedoped PA it decreases. A most important result is noticed for an intermediate doping rate (1.5%). In fact, for sweeping of the range of pressure, conductivity decreases in the beginning and then increases with pressure augmentation. This change is located at a critical pressure Pc. An empirical formula was proposed to describe this behaviour. The aim of this work is to contribute to the greater understanding of the pressure effect on the transport mechanism and/or the nature of charge carriers.



Edited by:

Maher Soueidan, Mohamad Roumié and Pierre Masri




M. Saidi et al., "Analyses of under Pressure Polyacetylene Conductivity", Advanced Materials Research, Vol. 324, pp. 328-331, 2011

Online since:

August 2011




[1] X. He, F. Gao, G. Tu, D. Hasko, S. H'ttner, U. Steiner, N. C. Greenham, R. H. Friend, and W. T. S. Huck. Nano Lett. 10 (4), (2010), 1302–1307.

[2] K. Dong-Jo, C. Myeon-Cheon, P. S. Soo, K. Hwajeong, and H. Chang-Sik. Journal of Nanoelectronics and Optoelectronics 5 (2), (2010), 277–280.

[3] S. K. Kivelson, Phys. Rev. B25 3798 (1982).

[4] H. Shirakawa and S. Ikeda, Synth. Metals, 1. 175, 1980 (1979).

[5] R. H. Shirakawa, Angew. Chem. Int. Ed. 40, 2574–2580 (2001).

[6] J. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci. Chem. Ed. 12, 11 (1974).

[7] M. Rolland, M. Aldissi, P. Bernier, M. Cadene, and F. Shue, Nature, 294 (5836), (1981), p.60.


[8] R. H. Baughmann, S. L. Hsu, G. P. Pez, and A. J. Signorell, J. Chem. Phys. 68, (1978), 5406.

[9] R. H. Baughmann et al., in R. B. Seymour (ed. ), Conductive Polymers (Plenum Press, NY, 1981), p.137.

[10] V. Kazan, T. Elallam, A. Antoniou, T. G. Hoang, M. Saidi, and M. Bendaoud, High Pressure Research 9 (1), 363–365 (1992).

[11] T. Miamoto and K. Shibayama, J. Appl. Phys. 44, (1973), 5372.

[12] M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, (1959), 1164.

[13] N. Ogata, Ion-conducting polymers, Polymer Reviews, 42 (3), (2002), 399–439.

[14] R. S. Kohlman, J. Joo, and A. J. Epstein, in J. E. Mark, ed., Physical Properties of Polymers Handbook (API Press, Woodbury, NY, 1996), p.453.

[15] J. Mikat, I. Orgzall, and H.D. Hochheimer, High Pressure Research 22 (1), (2002), 151-154.

[16] J. Mikat, I. Orgzall, S. Sapp, C.R. Martin, and H.D. Hochheimer, Optical investigations of conducting polypyrrole under pressure, High Pressure Research 18 (1), (2000), 305–310.


[17] A. B. Kaiser, S. A. Rogers, and Y. W. Park, Charge transport in conducting polymers: polyacetylene nanofibres, Molecular Crystals and Liquid Crystals 415 (1), (2004), 115– 124.


[18] K. Akagi. Review hyperstructured polyacetylene, Polym. Int. 56, (2007), 1192–1199.