Streamer-Surface Interaction in Heptane with Micro-Gaps


Article Preview

Interaction between streamer and 316L Stainless Steel substrate in heptane with micro-gaps gives craters with a very specific shape. The role of the Marangoni forces is stressed, a phenomenon which is generally neglected in EDM processes to describe the shape of the craters.



Edited by:

Maher Soueidan, Mohamad Roumié and Pierre Masri




A. Hamdan et al., "Streamer-Surface Interaction in Heptane with Micro-Gaps", Advanced Materials Research, Vol. 324, pp. 89-92, 2011

Online since:

August 2011




[1] B. M. Schumacher, After 60 years of EDM the discharge process remains still disputed, Journal of Materials Processing Technology, 149 (2004) 376–381.


[2] Y.F. Luo, The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining, Journal of Materials Processing Technology, 68 (1997) 121–131.


[3] I. Ishida, Y. Takeuchi, L-shaped curved hole creation by means of electrical discharge machining and an electrode curved motion generator, Int. J. Adv. Manuf. Technol. 19 (4) (2002) 260–265.


[4] T. Masuzawa, State of the art of micromachining, Ann. CIRP 49(2) (2000) 473–488.

[5] S. Das, M. Klotz and F. Klocke, EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses, Journal of Materials Processing Technology 142 (2003) 434–451.


[6] B. Izquierdo , J.A. Sanchez, S. Plaza, I. Pombo and N. Ortega, A numerical model of the EDM process considering the effect of multiple discharges, International Journal of Machine Tools & Manufacture, 49(2009)220–229.


[7] D.D. Dibitonto, P.T. Eubank, M.R. Patel and M.A. Barrufet, J. Appl. Phys. 66 (1989) 4095–4103.

[8] M.R. Patel and M.A. Barrufet, P.T. Eubank and D.D. Dibitonto, J. Appl. Phys. 66 (1989) 4104–4111.

[9] P.T. Eubank, M.R. Patel and M.A. Barrufet and B. Bozkurt, J. Appl. Phys. 73 (1993) 7100–7909.

[10] F. Heiman, P. Sibillot and R. Coelho, New observations of pre-breakdown events in n-hexane in a point-plane configuration, J. Phys. D: Appl. Phys., 9 (1976) 95–106.


[11] Y.P. Lei, H. Murakawa, Y.W. Shi and X.Y. Li, Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting, Comp. Mat. Sci., 21 (2001) 276–290.


[12] P.M. Raj, S. Sarkar, S. Chakraborty, G. Phanikumar, P. Dutta and K. Chattopadhyay, Modelling of transport phenomena in laser surface alloying with distributed species mass source, Int. J. Heat Fluid Flow 23 (2002) 298–307.


[13] J. -M. Drezet, S. Pellerin, C. Bezençon and S. Mokadem, Modelling the Marangoni convection in laser heat treatment, J. Phys. IV. France, 120 (2004) 299–306.

[14] V. Kumar, G. Biswas, G. Brenner and F. Durst, Effect of thermocapillary convection in an industrial Czochralski crucible: numerical simulation, Int. J. Heat Mass Transfer, 46 (2003) 1641–1652.


[15] W. Zhang, C. -H. Kim and T. DebRoy, Heat and fluid flow in complex joints during gas metal arc welding—Part II: Application to fillet welding of mild steel, J. Appl. Phys., 95 (2004) 5220–5229.


Fetching data from Crossref.
This may take some time to load.