Cyclic Oxidation Behavior of Thermal Barrier Coatings Irradiated by High-Intensity Pulsed Ion Beam

Abstract:

Article Preview

High-temperature oxidation resistance of 7 wt.%Y2O3-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) has been investigated in a cyclic oxidation condition at 1050 °C ×1 h. The ceramic coating of a tetragonal ZrO2 phase structure was prepared on GH33 superalloy substrates with a NiCoCrAlY bond coat by using electron-beam physical-vapor deposition (EB-PVD). The ceramic coating is composed of columnar grains forming dense clusters spacing with several-μm gaps among grain clusters. The characteristics of the columnar grains disappeared after HIPIB irradiation at the ion current densities of 100-200 A/cm2, and the irradiated surface presented a smoothed, densified feature after the remelting and ablation due to the HIPIB irradiation. The thickness of the densified layer is about 1 μm. After oxidation with 15 cycles at 1050 °C ×1 h, the oxidation kinetics curves of the as-deposited and irradiated TBCs showed a parabolic shape. The weight gain of original sample is about 0.8-0.9 mg/cm2, while the values of the HIPIB-irradiated TBCs decreased to some extent. The lowest weight gain is obtained for the irradiated TBCs at 200 A/cm2 with one shot, being 0.3-0.4 mg/cm2, and those at 100 A/cm2 have a medium weight gain of 0.6-0.7 mg/cm2. The cross-sectional morphologies of HIPIB-irradiated TBCs show less oxidation of the NiCoCrAlY bonding layer, with a thinner thermally grown oxide (TGO) layer. The morphology observation is consistent with the results of cyclic oxidation test. It is found that the inward diffusion of oxygen through TBCs can be significantly impeded by the densified top layer by the HIPIB irradiation, thus limiting the oxidation of the bonding layer, improving the overall oxidation resistance of the irradiated TBCs.

Info:

Periodical:

Advanced Materials Research (Volumes 33-37)

Edited by:

Wei Yang, Mamtimin Geni, Tiejun Wang and Zhuo Zhuang

Pages:

1337-1344

DOI:

10.4028/www.scientific.net/AMR.33-37.1337

Citation:

Y. Q. Wang et al., "Cyclic Oxidation Behavior of Thermal Barrier Coatings Irradiated by High-Intensity Pulsed Ion Beam", Advanced Materials Research, Vols. 33-37, pp. 1337-1344, 2008

Online since:

March 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.