Geometrically Nonlinear Analysis of Cross-Ply Laminated Composite Beams Subjected to Uniform Temperature Rise

Abstract:

Article Preview

Abstract: On the basis of Reddy’s higher order shear deformation plate theory and the von Kármán’s geometry nonlinear theory, governing equations for nonlinear thermal buckling and post-buckling of cross-ply laminated composite beam subjected to a temperature rise are derived, in which the stretching-bending coupling terms produced by the non-homogenous distribution of the material properties are included. By using the shooting method to solve the corresponding nonlinear boundary value problem, numerical solutions for thermal post-buckling of cross-ply shear deformation laminated composite beam with its both ends immovably simply supported under uniform temperature rise are obtained. As an example, equilibrium paths and configurations for laminated composite beam paved in term of 0/90/0 are presented and characteristic curves of the nonlinear deformation changing with the thermal load were plotted. The effects of the geometric and physical parameters on the deformation of the beam are also examined. The theoretical analysis and numerical results show that different thermal expansion coefficient ratio, elastic moduli ratio, shear stiffness ratio will influence of the non-dimension critical buckling temperature.

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Edited by:

Yun-Hae Kim, Prasad Yarlagadda, Xiaodong Zhang and Zhijiu Ai

Pages:

527-530

DOI:

10.4028/www.scientific.net/AMR.335-336.527

Citation:

X. P. Chang et al., "Geometrically Nonlinear Analysis of Cross-Ply Laminated Composite Beams Subjected to Uniform Temperature Rise", Advanced Materials Research, Vols. 335-336, pp. 527-530, 2011

Online since:

September 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.