Synthesis and Properties of LST-X%Bi2O3 Anode Materials for Solid Oxide Fuel Cells


Article Preview

Ceramic systems of template explains and demonstrates how to prepare your camera-ready Ceramic systems of Bi2O3 and La-doped SrTiO3 (LST) solid mixtures La0.2Sr0.8TiO3–x%Bi2O3 (x = 0, 20, 25, 30, 35) are prepared and explored as possible anode materials for solid oxide fuel cells. It is shown that the conductivity of La0.2Sr0.8TiO3–x%Bi2O3 composites increases from 0.15 to 1.4 S cm−1 in 97%H2 +3%H2O at 800°C with increasing the content of Bi2O3. Electrochemical impedance spectra indicated that the addition of Bi2O3 into LST can significantly reduce the fuel cell’s polarization and refine the grains and increase the triple phase boundary, leading to a better performance of the fuel cells. The results suggest potential applications of LST–x%Bi2O3 composite as SOFC anode materials.



Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li




X. H. Zhang et al., "Synthesis and Properties of LST-X%Bi2O3 Anode Materials for Solid Oxide Fuel Cells", Advanced Materials Research, Vols. 347-353, pp. 3325-3329, 2012

Online since:

October 2011




[1] C.W. Suna and U. Stimming, J. Power Sources Vol. 171 (2007), p.247.

[2] B. BoerDe, PhD. Thesis, University of Twente, The Netherlands, (1998).

[3] Q.X. Fu, F. Tietz and D. Stover, J. Electrochem. Soc. Vol. 153 (4) (2006), p. D74.

[4] X.F. Sun, S.R. Wang, Z.R. Wang, X.F. Ye, T.L. Wen and F.Q. Huang, J. Power Sources Vol. 183 (2008), p.114.

[5] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. Mcevoy and M. Mogensen, Nat. Mater. Vol. 3 (2004), p.17.

[6] S.W. Tao and J.T.S. Irvine, Chem. Rec. Vol. 4 (2004), p.83.

[7] S.W. Tao and J.T.S. Irvine, Nat. Mater. Vol. 2 (2003), p.320.

[8] B.A. Boukamp, Nat. Mater. Vol. 2 (2003), p.294.

[9] G. Pudmich, B.A. Boukamp, M. Gonzalez-Cuenca, W. Jungen, W. Zipprich and F. Tietz, Solid State Ionics Vol. 135 (2000), p.433.

[10] P. Blennow, K.K. Hansen, L.R. Wallenberg and M. Mogensen, Electrochem. Acta. Vol. 52 (2006), p.1651.

[11] O.A. Marina, N.L. Canfield and J.W. Stevenson, Solid State Ionics Vol. 149 (2002), p.21.

[12] J.C. Vazquez, S.W. Tao and J.T.S. Irvine, Solid State Ionics Vol. 159 (2003), p.159.

[13] U. Balachandran and N. Eror, J. Electrochem. Soc. Vol. 129 (1982), p.1021.

[14] S.Q. Hui and A. Petric, Solid State Ionics Vol. 143 (2001), p.275.

[15] N.M. Sammes, G.A. Tompsett, H. Nafe and F. Aldinger, J. Eur. Ceram. Soc. Vol. 19 (1999), p.1801.

[16] R. Irmawati, M.N. Noorfarizan Nasriah, Y.H. Taufiq-Yap and S.B. Abdul Hamid, Catal. Today Vol. 93 (2004), p.701.


[17] J. Zhang, E.J. Liang and X.H. Zhang, J. Power Sources Vol. 195 (2010), p.6758.

[18] T.J. Huang and J.F. Li, J. Power Sources Vol. 181 (2008), p.62.

[19] S.N. NarangaT, N.D. Patelav and V.B. Karthab, J. Mol. Struct. Vol. 327 (1994), p.221.

[20] T. Ikari, T. Tanaka, K. Ura, K. Maeda and K. Futagami, Phys. Rev. B Vol. 47 (1993), p.9.

[21] H. Uwe, H. Yamaguchi and T. Sakudo, Ferroelectrics Vol. 96 (1989), p.123.

[22] Y.L. Dua, G. Chen and M.S. Zhang, Solid State Commun. Vol. 130 (2004), p.577.

[23] I.A. Akimov, A.A. Sirenko, A.M. Clark, J. Hao and X. Xi, Phys. Rev. Lett. Vol. 84 (2000), p.4625.

[24] P.A. Fleury and J.M. Worlock, Phys. Rev. Vol. 174 (1968), p.613.

[25] S.K. Mishra, R. Ranjan, D. Pandey, R. Ouillon, J.P. Pinan-Lucarre, P. Ranson and P. Pruzan, Phys. Rev. B Vol. 64 (2001), p.092302.

[26] U. Balachandran and N. Eror, J. Solid State Chem. Vol. 39 (1981), p.351.

[27] K.B. Yoo and G.M. Choi, Solid State Ionics Vol. 180 (2009), p.86.