High-Rate LiFePO4 Electrode Material Synthesized by Chemical Grinding Method

Abstract:

Article Preview

A facile solid state method based chemical grinding method was applied to prepare high rate LiFePO4. SEM test results showed that the prepared LiFePO4 (CG-LiFePO4) is more fine and uniform than that of the crude LiFePO4 (C-LiFePO4) prepared by conventional solid state reaction method. Electrochemical measurement results indicated that CG-LiFePO4 exhibited much better high-rate characteristic than crude one which delivered a stable discharge capacity of 140 mAhg -1, 126 mAhg -1 at 0.5C rate and 2C rate respectively.

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li

Pages:

3459-3463

DOI:

10.4028/www.scientific.net/AMR.347-353.3459

Citation:

B. F. Wang et al., "High-Rate LiFePO4 Electrode Material Synthesized by Chemical Grinding Method", Advanced Materials Research, Vols. 347-353, pp. 3459-3463, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188-1194.

[2] J.B. Goodenough, J. Power Sources, 174 (2007) 996-1000.

[3] C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 193 (2009) 841-845.

[4] Y. Yang, X.Z. Liao, Z.F. Ma, B.F. Wang, L. He, Y.S. He, Electrochem. Commun., 11 (2009) 1277-1280.

[5] D.D. MacNeil, Z.H. Lu, Z.H. Chen, J.R. Dahn, J. Power Sources, 108 (2002) 8-14.

[6] X.Z. Liao, Z.F. Ma, Y.S. He, X.M. Zhang, L. Wang, Y. Jiang, J. Electrochem. So. c, 152 (2005) A1969-A1973.

[7] X.L. Li, F.Y. Kang, X.D. Bai, W. Shen, Electrochem. Commun., 9 (2007) 663-666.

[8] B.F. Wang, Y.L. Qiu, S.Y. Ni, Solid State Ionics, 178 (2007) 843-847.

[9] Y. Wang, G.Z. Cao, Adv. Mater., 20 (2008) 2251-2269.

[10] Z.J. Wu, H.F. Yue, L.S. Li, B.F. Jiang, X.R. Wu, P. Wang, J. Power Sources, 195 (2010) 2888-2893.

[11] Y.S. Hu, Y.G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, J. Maier, Adv. Mater., 19 (2007) 1963-(1966).

[12] D.W. Choi, D.H. Wang, V.V. Viswanathan, I.T. Bae, W. Wang, Z.M. Nie, J.G. Zhang, G.L. Graff, J. Liu, Z.G. Yang, T. Duong, Electrochem. Commun., 12 (2010) 378-381.

[13] M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun., 9 (2007) 2778-2783.

[14] S.B. Lee, I.C. Jang, H.H. Lim, V. Aravindan, H.S. Kim, Y.S. Lee, J. Alloy Compd., 491 (2010) 668-672.

[15] S.B. Lee, S.H. Cho, S.J. Cho, G.J. Park, S.H. Park, Y.S. Lee, Electrochem. Commun., 10 (2008) 1219-1221.

[16] D. Choi, P.N. Kumta, J. Power Sources, 163 (2007) 1064-1069.

[17] B. Ellis, W.H. Kan, W.R.M. Makahnouk, L.F. Nazar, J. Mater. Chem., 17 (2007) 3248-3254.

[18] G.C. Liang, L. Wang, X.Q. Ou, X. Zhao, S.Z. Xu, J. Power Sources, 184 (2008) 538-542.

[19] J.F. Qian, M. Zhou, Y.L. Cao, X.P. Ai, H.X. Yang, J. Phys. Chem. C, 114 (2010) 3477-3482.

[20] J.F. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, T. Sakai, J. Power Sources, 195 (2010) 2877-2882.

DOI: 10.1016/j.jpowsour.2009.11.017

[21] M. Konarova, I. Taniguchi, Mater. Res. Bull, 43 (2008) 3305-3317.

[22] S.F. Yang, Y.N. Song, P.Y. Zavalij, M.S. Whittingham, Electrochem. Commun., 4 (2002) 239-244.

[23] C.H. Mi, X.B. Zhao, G.S. Cao, J.P. Tu, J. Electrochem. Soc., 152 (2005) A483-A487.

[24] N.N. Sinha, C. Shivakumara, N. Munichandraiah, Acs Applied Materials & Interfaces, 2 (2010) 2031-(2038).

[25] M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, J. Power Sources, 174 (2007) 1241-1250.

In order to see related information, you need to Login.