Synthesis of Mg (NH2)2 and Hydrogen Storage Properties of Mg (NH2)2–LiH System


Article Preview

Mg(NH2)2 was synthesized by first high energy milling MgH2 powder in a 99.995% NH3 atmosphere and then heat treating at 300oC, and hydrogen storage properties of prepared Mg(NH2)2+2.2LiH (molar ratio) had been studied in the temperature range of 150-240oC. It was found that mechanical milling of Mg (NH2)2 and LiH with molar ratio 1:2.2 followed by heat treatment under static hydrogen pressure and dehydrogenating at 208.5oC yields the desired reversible hydrogen storage phase: Li2Mg(NH)2. Desorption kinetics reveal a rapid reaction for the system and the maximum hydrogen capacity can reach 4.6 wt. % at 208.5oC. The system starts to dehydrogenate at 150oC and the Arrhenius activation energy Ea of desorption reaction can be determined to be 25.8 kJ/mol H2 based on the data of kinetics. Additionally, the desorption reaction enthalpy (H) and entropy (S) are calculated to be 42.8 kJ/mol H2 and 149.2 J. K-1/ mol H2 respectively from PCI measurements.



Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li




K. Zhang et al., "Synthesis of Mg (NH2)2 and Hydrogen Storage Properties of Mg (NH2)2–LiH System", Advanced Materials Research, Vols. 347-353, pp. 3609-3615, 2012

Online since:

October 2011




[1] J.A. Ritter, A.D. Ebner, J. Wang and R. Zidan: Materials Today Vol. 6 (2003), p.18.

[2] P. Chen and M. Zhu: Materials Today Vol. 11 (2008), p.36.

[3] C.W. Forsberg: Nuclear Technology Vol. 166 (2009), p.3.

[4] A. Zuttel: Naturwissenschaften Vol. 91 (2004), p.157.

[5] S.M. Aceves,F. Espinosa-Loza, E. Ledesma-Orozco, T.O. Ross, A.H. Weisberg, T.C. Brunner, O. Kircher: International Journal of Hydrogen Energy Vol. 35, (2010), p.1219.


[6] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher: International Journal of Hydrogen Energy Vol. 32, (2007), p.1121.

[7] S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz: Catalysis Today Vol. 120 (2007), p.246.

[8] F. Laurencelle, Z. Dehouche, F. Morin and J. Goyette: Journal of Alloys and Compounds Vol. 475 (2009), p.810.

[9] S. Hino, T. Ichikawa and Y. Kojima: J. Chem. Thermodynamics Vol. 42 (2010), p.810.

[10] E. Garrone, B. Bonelli and C. Otero Areán: Chemical Physics Letters Vol. 456 (2008), p.68.

[11] C. Liu, Y. Chen, C. Z. Wu, S. T. Xu, H. M. Cheng: Carbon Vol. 48 (2010), p.452.

[12] P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan: Nature Vol. 420 (2002), p.302.

[13] P. Chen, Z. Xiong, J. Luo, G. T. Wu, Y. F. Liu, J. J. Hu and W. F. Luo: Scripta Materialia Vol. 56 (2007), p.817.

[14] W. F. Luo, J. Wang, K. Stewart, M. Clift and K. Gross: Journal of Alloys and Compounds Vol. 446-447 (2007), p.336.

[15] S. Barison, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi and G. Torzo: Journal of Alloys and Compounds Vol. 459 (2008), p.343.


[16] J. Yang, A. Sudik and C. Wolverton: Journal of Alloys and Compounds Vol. 430 (2007), p.334.