Study of Catalytic Reduction of Formic Acid to Methanol under Mild Hydrothermal Conditions


Article Preview

In this paper, catalytic reduction of formic acid to methanol with different catalyst under mild hydrothermal conditions was investigated. Formic acid was successfully converted into methanol using Al as reductant and Cu as a catalyst under mild hydrothermal conditions. The selectivity of conversion from formic acid to methanol was found to be as high as 30% at 300 °C for 9 h with formic acid 60 g∙L-1, filling rate 35% and 4.35 mmol Al and 12 mmol Cu. The addition of Al2O3 was favorable for the synthesis of methanol. Comparing the yield of methanol with the same reaction condition for 3 h without the addition of Al2O3, the yield of methanol can be increased by near 100 per cent under the same condition with Al2O3 3 mmol. This process may provide a promising solution to provide methanol as fuel for transportation and mobile devices.



Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li




X. Zeng et al., "Study of Catalytic Reduction of Formic Acid to Methanol under Mild Hydrothermal Conditions", Advanced Materials Research, Vols. 347-353, pp. 3677-3680, 2012

Online since:

October 2011




[1] J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic: Science vol 327 (2010), p.1110.

[2] F. M. Jin, H. Enomoto: Energy & Environmental Science (2011), p.382.

[3] E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gartner, J. A. Dumesic: Science vol 322 (2008), p.417.

[4] S. P. Zhang, F. M. Jin, J. J. Hu, Z. B. Huo: Bioresource Technology vol 102 (2011), p. (1998).

[5] J. N. Chheda, G. W. Huber, J. A. Dumesic: Angew. Chem., Int. Ed. vol 46 (2007), p.7164.

[6] G. W. Huber, J. Chheda, C. B. Barrett, J. A. Dumesic: Science vol 308 (2005), p.1446.

[7] T. P. Garlson, T. P. Vispute, G. W. Huber: ChemSusChem vol 1 (2008) p.397.

[8] G. A. Olah: Catalysis Letters vol 93 (2004), p.1.

[9] G. A. Olah: Angewandte Chemie-International Edition vol 44 (2005), p.2636.

[10] X. M. Liu, G. Q. Lu, Z. f. Yan: Ind. Eng. Chem. Res. vol 42 (2003), p.6518.

[11] E. E. Ortelli, J. Wambach, A. Wokaun: Applied Catalysis a-General (2001), p.216.

[12] F.M. Jin, G.Y. Zhang, Y.J. Jin, Y. Watanabe, A. Kishita, H. Enomoto: Bioresource Technology vol 101 (2010), p.7299.

[13] F. M. Jin, Z. Y. Zhou, T. Moriya, H. Kishida, H. Higashijima, H. Enomoto: Environmental Science and Technology vol 39 (2005), p.1893.

[14] F. M. Jin, H. Enomoto: BioResources vol 4 (2009), p.704.

[15] F. M. Jin, J. Yun, G. M. Li, A. Kishita, K. Tohji, H. Enomoto: Green Chem., vol 10 (2008), p.612.

[16] F. M. Jin, A. Kishita, T. Moriya, H. Enomoto: J. Supercrit. Fluids vol 19 (2001), p.251.

[17] X. M. Liu, G. Q. Lu, Z. F. Yan, J. Beltramini: Ind Eng Chem Res, vol 42 (2003), p.6518.

Fetching data from Crossref.
This may take some time to load.