Research on Nanocrystalline Silicon Film Solar Cells

Abstract:

Article Preview

Nanocrystalline silicon film has become the research hit of today’ s P-V solar technology. It’s optical band gap was controlled through changing the grain size and crystalline volume fraction for the quanta dimension effect. The crystalline volume fraction in nc-Si:H is modulated by varying the hydrogen concentration in the silane plasma. Also, the crystallinity of the material increases with increasing hydrogen dilution ratio, the band tail energy width of the nc-Si:H concurrently decreases. Two sets of nc-Si:H solar cells were made with different layer thicknesss, their electronic and photonic bandgap, absorption coefficient, optical band gap, nanocrystalline grain size(D), and etc have been stuied. In addition, we discussed the relationship between the stress of nc-Si thin films and H2 ratio. At last nc-Si:H solar cells have been designed and prepared successfully in the optimized processing parameters.

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li

Pages:

870-873

DOI:

10.4028/www.scientific.net/AMR.347-353.870

Citation:

C. R. Xue "Research on Nanocrystalline Silicon Film Solar Cells", Advanced Materials Research, Vols. 347-353, pp. 870-873, 2012

Online since:

October 2011

Authors:

Export:

Price:

$35.00

[1] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta: Progress in Photovoltaics, vol. 16, no. 5, p.435 – 440, Aug. (2008).

[2] B. Rech, T. Roschek, T. Repmann, J. Muller, R. Schmitz, and W. Appenzellar: Thin Solid Films, vol. 427, no. 1 – 2, p.157 – 165, Mar. (2003).

DOI: 10.1016/s0040-6090(02)01210-5

[3] R. E. I. Schropp and M. Zeman: Norwell, MA: Kluwer Academic Publishers, 1998, p.3 – 6.

[4] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat: vol. 12, no. 2 – 3, p.113 – 142, Mar. (2004).

DOI: 10.1002/pip.533

[5] S. Guha: in Technology and Applications of Amorphous Silicon, R. A. Street, Ed. Germany: Springer, 2000, p.252 – 305.

[6] A. Matsuda: in Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper, Ed., Springer US, July 2007, p.581 – 595.

[7] J. R. Sheats: in Proceedings of SPIE: Emerging Lithographic Technologies VI, R. L. Engelstad, Ed. vol. 4688, 2002, p.240 – 248.

[8] M. N. van den Donker, B. Rech, R. Schmitz, J. Klomfass, G. Dingemans, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. V. de Sanden: Journal of Materials Research, vol. 22, no. 7, p.1767 – 1774, July (2007).

DOI: 10.1557/jmr.2007.0226

[9] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner: Solar Energy Materials and Solar Cells, vol. 62, no. 1 – 2, p.97 – 108, Apr. (2000).

DOI: 10.1016/s0927-0248(99)00140-3

[10] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner: Philosophical Magazine A – Physics of Condensed Matter Structure, Defects, and Mechanical Properties, vol. 77, No. 6, p.1447 – 1460, Jun. (1998).

DOI: 10.1080/01418619808214262

[11] M. M. Adachi: M. S. Thesis, Simon Fraser University, Vancouver, BC, Canada, (2007).

[12] H. J. Lee: M. S. Thesis, University of Waterloo, Waterloo, ON, Canada, (2008).

In order to see related information, you need to Login.