Interaction of CO with CuO and CuO/graphene: Reactions Mechanism and the Formation of CO2

Abstract:

Article Preview

CuO/graphene oxygen carrier models were built to investigate the reaction stoichiometry mechanism between the fuel gas CO and oxygen carrier CuO. The results show that the energy barrier of the single metal oxide CuO oxidation CO is 127.17kJ/mol, while energy barrier is only 42.64 kJ/ mol for the CuO/graphene. From the point view of chemical reaction dynamics, the oxidation activity of CuO/graphene much higher than single-metal oxide CuO, which indicate that graphene can improve the reaction performance of oxygen carrier. And analysis results for the oxidation of fuel gas CO has an important understanding of the process of scientific significance, and will promote the fundamental understanding and applications of the oxygen carrier CuO.

Info:

Periodical:

Advanced Materials Research (Volumes 354-355)

Edited by:

Hao Zhang, Yang Fu and Zhong Tang

Pages:

279-285

DOI:

10.4028/www.scientific.net/AMR.354-355.279

Citation:

W. Y. Li et al., "Interaction of CO with CuO and CuO/graphene: Reactions Mechanism and the Formation of CO2", Advanced Materials Research, Vols. 354-355, pp. 279-285, 2012

Online since:

October 2011

Export:

Price:

$35.00

[1] Abad, A.; Adánez, J. and García-Labiano, F: Chem Eng Sci. Vol. 62 (2007), p.533.

[2] Hossain, M. M. and de Lasa, H. I: Chem. Eng. Sci. Vol. 63 (2008), p.4433.

[3] Adánez, J.; García-Labiano, F, de Diego, L and F. Ind. Eng: Chem. Res. Vol. 45 (2006), p.2617.

[4] Corbella, B. Palacios, J. M: Fuel. Vol. 86 (2007), p.113.

[5] Adánez, J. and de Diego, L. F: Energy Fuels. Vol. 18 (2004), p.371.

[6] Ishida, M.; Takeshita, K.; Suzuki, K. and Ohba, T: Energy Fuels. Vol. 19 (2005), p.2514.

[7] Johansson, M.; Mattisson, T. and Lyngfelt, A. Ind: Eng. Chem. Res. Vol. 43 (2004), p.6978.

[8] MohammadM. Hossain and Hugo I. de Las: Chem. Eng. Sci. Vol. 63 (2008), p.4433.

[9] Mattisson, T., Johansson and M., Lyngfelt, A.: Energy & Fuels. Vol. 18 (2004), p.628.

[10] Abad, A., Adánez, J. and García-Labiano, F: Chem. Eng. Sci. Vol. 62 (2007), p.533.

[11] Zafar, Q., Mattisson, T., Gevert and B. Redox: Energy & Fuels. Vol. 20 (2005), p.34.

[12] Corbella, B. M., De Diego, L and García, F: Energy & Fuels. Vol. 19 (2005), p.433.

[13] Balandin, A. A., Ghosh, S. and Bao, W: Nano. Lett. Vol. 8 (2008), p.902.

[14] Li, Y., Zhou, Z and Yu, G: Phys. Chem. Vol. 114 (2010), p.6250.

[15] Lu, Y. -H., Zhou, M and Zhang, C: Phys. Chem. Vol. 113 (2009), p.20156.

[16] Liu, B., Lusk, M. T and Ely, J. F: Phys. Chem. Vol. 113 (2009), p.13715.

[17] Pan, Y. -x., Liu, C. -j and Wiltowski, T. S: Catalysis Today. Vol. 147 (2009), p.68.

[18] Perdew J. P, B. K., Ernzerhof M: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

In order to see related information, you need to Login.